Suppr超能文献

三聚体结构确保小牛嘌呤核苷磷酸化酶的稳定性和生物活性:酶的单体和三聚体形式的计算和体外研究。

Trimeric Architecture Ensures the Stability and Biological Activity of the Calf Purine Nucleoside Phosphorylase: In Silico and In Vitro Studies of Monomeric and Trimeric Forms of the Enzyme.

机构信息

Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.

Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.

出版信息

Int J Mol Sci. 2023 Jan 21;24(3):2157. doi: 10.3390/ijms24032157.

Abstract

Mammalian purine nucleoside phosphorylase (PNP) is biologically active as a homotrimer, in which each monomer catalyzes a reaction independently of the others. To answer the question of why the native PNP forms a trimeric structure, we constructed, in silico and in vitro, the monomeric form of the enzyme. Molecular dynamics simulations showed different geometries of the active site in the non-mutated trimeric and monomeric PNP forms, which suggested that the active site in the isolated monomer could be non-functional. To confirm this hypothesis, six amino acids located at the interface of the subunits were selected and mutated to alanines to disrupt the trimer and obtain a monomer (6Ala PNP). The effects of these mutations on the enzyme structure, stability, conformational dynamics, and activity were examined. The solution experiments confirmed that the 6Ala PNP mutant occurs mainly as a monomer, with a secondary structure almost identical to the wild type, WT PNP, and importantly, it shows no enzymatic activity. Simulations confirmed that, although the secondary structure of the 6Ala monomer is similar to the WT PNP, the positions of the amino acids building the 6Ala PNP active site significantly differ. These data suggest that a trimeric structure is necessary to stabilize the geometry of the active site of this enzyme.

摘要

哺乳动物嘌呤核苷磷酸化酶(PNP)作为同源三聚体具有生物活性,其中每个单体独立于其他单体催化反应。为了解释为什么天然 PNP 形成三聚体结构,我们通过计算机模拟和体外实验构建了该酶的单体形式。分子动力学模拟显示,未突变的三聚体和单体 PNP 形式的活性位点具有不同的几何形状,这表明分离的单体中的活性位点可能没有功能。为了证实这一假设,选择位于亚基界面的六个氨基酸突变为丙氨酸以破坏三聚体并获得单体(6Ala PNP)。研究了这些突变对酶结构、稳定性、构象动力学和活性的影响。溶液实验证实,6Ala PNP 突变体主要以单体形式存在,其二级结构几乎与野生型 WT PNP 相同,重要的是,它没有酶活性。模拟证实,尽管 6Ala 单体的二级结构与 WT PNP 相似,但构成 6Ala PNP 活性位点的氨基酸的位置有很大差异。这些数据表明,三聚体结构对于稳定该酶的活性位点的几何形状是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ed6/9916683/0e907e6e274e/ijms-24-02157-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验