Suppr超能文献

久坐和活跃的老年人群的骨骼肌具有独特的基因外染色体环状 DNA 特征。

Skeletal Muscles of Sedentary and Physically Active Aged People Have Distinctive Genic Extrachromosomal Circular DNA Profiles.

机构信息

Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain.

Basque Foundation for Science, IKERBASQUE, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain.

出版信息

Int J Mol Sci. 2023 Feb 1;24(3):2736. doi: 10.3390/ijms24032736.

Abstract

To bring new extrachromosomal circular DNA (eccDNA) enrichment technologies closer to the clinic, specifically for screening, early diagnosis, and monitoring of diseases or lifestyle conditions, it is paramount to identify the differential pattern of the genic eccDNA signal between two states. Current studies using short-read sequenced purified eccDNA data are based on absolute numbers of unique eccDNAs per sample or per gene, length distributions, or standard methods for RNA-seq differential analysis. Previous analyses of RNA-seq data found significant transcriptomics difference between sedentary and active life style skeletal muscle (SkM) in young people but very few in old. The first attempt using circulomics data from SkM and blood of aged lifelong sedentary and physically active males found no difference at eccDNA level. To improve the capability of finding differences between circulomics data groups, we designed a computational method to identify Differentially Produced per Gene Circles (DPpGCs) from short-read sequenced purified eccDNA data based on the circular junction, split-read signal, of the eccDNA, and implemented it into a software tool DifCir in Matlab. We employed DifCir to find to the distinctive features of the influence of the physical activity or inactivity in the aged SkM that would have remained undetected by transcriptomics methods. We mapped the data from tissue from SkM and blood from two groups of aged lifelong sedentary and physically active males using Circle_finder and subsequent merging and filtering, to find the number and length distribution of the unique eccDNA. Next, we used DifCir to find up-DPpGCs in the SkM of the sedentary and active groups. We assessed the functional enrichment of the DPpGCs using Disease Gene Network and Gene Set Enrichment Analysis. To find genes that produce eccDNA in a group without comparison with another group, we introduced a method to find Common PpGCs (CPpGCs) and used it to find CPpGCs in the SkM of the sedentary and active group. Finally, we found the eccDNA that carries whole genes. We discovered that the eccDNA in the SkM of the sedentary group is not statistically different from that of physically active aged men in terms of number and length distribution of eccDNA. In contrast, with DifCir we found distinctive gene-associated eccDNA fingerprints. We identified statistically significant up-DPpGCs in the two groups, with the top up-DPpGCs shed by the genes , , , , and in the sedentary group, and , , , and in the active group. The up-DPpGCs in both groups carry mostly gene fragments rather than whole genes. Though the subtle transcriptomics difference, we found to be both transcriptionally up-regulated and up-DPpGCs gene in sedentary SkM. DifCir emphasizes the high sensitivity of the circulome compared to the transcriptome to detect the molecular fingerprints of exercise in aged SkM. It allows efficient identification of gene hotspots that excise more eccDNA in a health state or disease compared to a control condition.

摘要

为了使新的外染色体环状 DNA(eccDNA)富集技术更接近临床应用,特别是用于疾病或生活方式条件的筛查、早期诊断和监测,识别两种状态下基因 eccDNA 信号的差异模式至关重要。目前使用短读测序纯化的 eccDNA 数据的研究基于每个样本或每个基因的独特 eccDNA 数量、长度分布或 RNA-seq 差异分析的标准方法。先前对 RNA-seq 数据的分析发现,年轻人中久坐不动和活跃生活方式骨骼肌(SkM)之间存在显著的转录组差异,但老年人中非常少。首次尝试使用来自老年人终生久坐不动和积极运动男性的 SkM 和血液的循环组学数据,在 eccDNA 水平上未发现差异。为了提高从循环组学数据组中发现差异的能力,我们设计了一种基于 eccDNA 的环形接头、拆分读取信号的计算方法,从短读测序纯化的 eccDNA 数据中识别差异产生的基因环状物(DPpGCs),并将其实现为 Matlab 中的软件工具 DifCir。我们使用 DifCir 发现了物理活动或不活动对衰老 SkM 的影响的独特特征,这些特征将通过转录组学方法无法检测到。我们使用 Circle_finder 对来自两组老年人终生久坐不动和积极运动男性的 SkM 组织和血液数据进行映射,并随后进行合并和过滤,以找到独特 eccDNA 的数量和长度分布。接下来,我们使用 DifCir 在久坐和活跃组的 SkM 中找到 UP-DPpGCs。我们使用疾病基因网络和基因集富集分析来评估 DPpGCs 的功能富集。为了找到在没有与另一组进行比较的情况下产生 eccDNA 的基因,我们引入了一种方法来找到常见 PpGCs(CPpGCs),并使用它在久坐和活跃组的 SkM 中找到 CPpGCs。最后,我们发现了携带整个基因的 eccDNA。我们发现,就 eccDNA 的数量和长度分布而言,久坐组的 SkM 与积极运动的老年男性没有统计学差异。相比之下,通过 DifCir,我们发现了具有独特基因关联的 eccDNA 指纹。我们在两组中都发现了具有统计学意义的 UP-DPpGCs,其中 UP-DPpGCs 主要由基因、、、、和在久坐组中,和、、、和在活跃组中表达。两组的 UP-DPpGCs 携带的大多是基因片段,而不是整个基因。尽管转录组学存在细微差异,我们发现在久坐的 SkM 中,既是转录上调的,也是 UP-DPpGCs 基因。DifCir 强调了循环组学与转录组学相比检测衰老 SkM 中运动的分子指纹的高灵敏度。它允许有效地识别基因热点,与对照条件相比,这些基因热点在健康状态或疾病中切除更多的 eccDNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0de/9917053/f9350a5424ef/ijms-24-02736-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验