Fotouhiardakani Faegheh, Laurent Morgane, Profili Jacopo, Ravichandran Sethumadhavan, Dorairaju Gowri, Laroche Gaetan
Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, QC G1V 0A6, Canada.
Centre de Recherche du CHU de Québec, Hôpital St François d'Assise, 10 rue de L'Espinay, Québec, QC G1L 3L5, Canada.
Materials (Basel). 2023 Jan 19;16(3):942. doi: 10.3390/ma16030942.
Due to their chemical inertness and low friction coefficient, fluoropolymers are today widely employed in sectors of activity as diverse and distinct as the textile industry, architectural sector, and medicine. However, their low surface energy results in poor adhesion, for example, when used for a component in a composite device with multiple other materials. Among the techniques used to enhance their adhesion, atmospheric pressure discharges provide a fast and low-cost method with a reduced environmental impact. Although this approach has proven to be efficient, the different chemical and physical processes in the discharge remain not fully understood. In this study, fluoropolymer surfaces were modified using an atmospheric pressure dielectric barrier discharge in a nitrogen and organic precursor environment. To prevent any damage to fluoropolymer surfaces, the dissipated power in the discharges was tuned by applying a duty cycle. Evidence shows that plasma treatment allows for the incorporation of oxygen and nitrogen in the surface resulting in the formation of hydrophilic functionalities such as carbonyl groups both in ketone and amide form, amine, and hydroxyl groups after 180 s of treatment. Overall, the data reveal that the discharge duty cycle has more effect on the oxygen and carbon content in the coating than the precursor concentration. In addition, increasing the precursor concentration limits the molecular fragmentation and nitrogen incorporation into the coating. These experiments enable the building of a better fundamental understanding of the formation mechanism of such chemical moieties at the fluoropolymer surface.
由于其化学惰性和低摩擦系数,含氟聚合物如今广泛应用于纺织工业、建筑领域和医学等多种多样且截然不同的活动领域。然而,其低表面能导致附着力较差,例如,当用于与多种其他材料组成的复合装置中的一个部件时。在用于增强其附着力的技术中,大气压放电提供了一种快速且低成本的方法,同时对环境的影响较小。尽管这种方法已被证明是有效的,但放电过程中不同的化学和物理过程仍未被完全理解。在本研究中,含氟聚合物表面在氮气和有机前驱体环境中使用大气压介质阻挡放电进行改性。为防止对含氟聚合物表面造成任何损害,通过施加占空比来调节放电中的耗散功率。证据表明,等离子体处理可使表面引入氧和氮,从而在处理180秒后形成亲水性官能团,如酮和酰胺形式的羰基、胺基和羟基。总体而言,数据表明放电占空比对涂层中的氧和碳含量的影响大于前驱体浓度。此外,增加前驱体浓度会限制分子碎片化以及氮掺入涂层。这些实验有助于更好地从根本上理解此类化学基团在含氟聚合物表面的形成机制。