Dufour Thierry
LPP (UMR 7648), Sorbonne Université, CNRS, Polytech. X, 4 Place Jussieu, B. C. 90, 75005 Paris, France.
Polymers (Basel). 2023 Aug 30;15(17):3607. doi: 10.3390/polym15173607.
This comprehensive review begins by tracing the historical development and progress of cold plasma technology as an innovative approach to polymer engineering. The study emphasizes the versatility of cold plasma derived from a variety of sources including low-pressure glow discharges (e.g., radiofrequency capacitively coupled plasmas) and atmospheric pressure plasmas (e.g., dielectric barrier devices, piezoelectric plasmas). It critically examines key operational parameters such as reduced electric field, pressure, discharge type, gas type and flow rate, substrate temperature, gap, and how these variables affect the properties of the synthesized or modified polymers. This review also discusses the application of cold plasma in polymer surface modification, underscoring how changes in surface properties (e.g., wettability, adhesion, biocompatibility) can be achieved by controlling various surface processes (etching, roughening, crosslinking, functionalization, crystallinity). A detailed examination of Plasma-Enhanced Chemical Vapor Deposition (PECVD) reveals its efficacy in producing thin polymeric films from an array of precursors. Yasuda's models, Rapid Step-Growth Polymerization (RSGP) and Competitive Ablation Polymerization (CAP), are explained as fundamental mechanisms underpinning plasma-assisted deposition and polymerization processes. Then, the wide array of applications of cold plasma technology is explored, from the biomedical field, where it is used in creating smart drug delivery systems and biodegradable polymer implants, to its role in enhancing the performance of membrane-based filtration systems crucial for water purification, gas separation, and energy production. It investigates the potential for improving the properties of bioplastics and the exciting prospects for developing self-healing materials using this technology.
本综述开篇追溯了冷等离子体技术作为聚合物工程创新方法的历史发展与进步。该研究强调了源自多种来源的冷等离子体的多功能性,这些来源包括低压辉光放电(如射频电容耦合等离子体)和大气压等离子体(如介质阻挡装置、压电等离子体)。它严格审视了关键操作参数,如折合电场、压力、放电类型、气体类型和流速、基底温度、间隙,以及这些变量如何影响合成或改性聚合物的性能。本综述还讨论了冷等离子体在聚合物表面改性中的应用,强调了如何通过控制各种表面过程(蚀刻、粗糙化、交联、功能化、结晶度)来实现表面性质(如润湿性、粘附性、生物相容性)的变化。对等离子体增强化学气相沉积(PECVD)的详细研究揭示了其在由一系列前驱体生产聚合物薄膜方面的功效。解释了安田模型、快速逐步增长聚合(RSGP)和竞争性烧蚀聚合(CAP),作为等离子体辅助沉积和聚合过程的基本机制。然后,探讨了冷等离子体技术的广泛应用,从生物医学领域,在该领域它用于创建智能药物递送系统和可生物降解的聚合物植入物,到其在提高对水净化、气体分离和能源生产至关重要的基于膜的过滤系统性能方面的作用。它研究了改善生物塑料性能的潜力以及使用该技术开发自愈材料的令人兴奋的前景。