Castro António, Calderon Sebastian, Marques Luís
Center of Physics of Minho and Porto Universities, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal.
Materials (Basel). 2023 Feb 2;16(3):1275. doi: 10.3390/ma16031275.
Zn:ZnO nanostructures have been studied extensively due to their potential use in many applications, such as oxygen scavengers for food packaging applications. Under atmospheric conditions, ZnO grows on the surface of Zn via an oxidation process. The mechanisms governing Zn oxidation are still not fully understood, with classical oxidation models, such as the Cabrera Mott, underestimating the oxide thickness of Zn:ZnO core-shell structures. In this work, Ab initio DFT calculations were performed to assess the adsorption properties of oxygen molecules on Zn:ZnO heterostructures to help elucidate the mechanisms involved in the growth of a ZnO film on a Zn substrate. Results suggest that the charge transfer mechanism from the Zn:ZnO heterostructures to the adsorbed oxygen layer can be promoted by two different processes: the electronic doping of ZnO due to the formation of the Zn:ZnO interface and the excess surface charge due to the presence of dangling bonds on the as cleaved ZnO.
氧化锌纳米结构因其在许多应用中的潜在用途而受到广泛研究,例如用于食品包装应用的氧气清除剂。在大气条件下,氧化锌通过氧化过程在锌表面生长。控制锌氧化的机制仍未完全理解,经典的氧化模型,如卡布雷拉-莫特模型,低估了锌:氧化锌核壳结构的氧化物厚度。在这项工作中,进行了从头算密度泛函理论计算,以评估氧分子在锌:氧化锌异质结构上的吸附特性,以帮助阐明在锌衬底上生长氧化锌薄膜所涉及的机制。结果表明,从锌:氧化锌异质结构到吸附氧层的电荷转移机制可以通过两种不同的过程来促进:由于锌:氧化锌界面的形成导致氧化锌的电子掺杂,以及由于劈开的氧化锌上存在悬空键而产生的过量表面电荷。