Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy.
Department of Innovation Engineering, University of Salento, Via Monteroni, 73100 Lecce, Italy.
Molecules. 2023 Jan 18;28(3):957. doi: 10.3390/molecules28030957.
Among post-lithium ion battery technologies, rechargeable chemistries with Zn anodes bear notable technological promise owing to their high theoretical energy density, lower manufacturing cost, availability of raw materials and inherent safety. However, Zn anodes, when employed in aqueous electrolytes, suffer from hydrogen evolution, passivation, and shape changes. Alternative electrolytes can help tackle these issues, preserving the green and safe characteristics of aqueous-based ones. Deep eutectic solvents (DESs) are promising green and low-cost non-aqueous solvents for battery electrolytes. Specifically, the cycling of Zn anodes in DESs is expected to be reversible, chiefly owing to their dendrite-suppression capability. Nevertheless, apart from a few studies on Zn plating, insight into the cathodic-anodic electrochemistry of Zn in DESs is still very limited. In view of developing DES-based battery electrolytes, it is crucial to consider that a potential drawback might be their low ionic conductivity. Water molecules can be added to the eutectic mixtures by up to 40% to increase the diffusion coefficient of the electroactive species and lower the electrolyte viscosity without destroying the eutectic nature. In this study, we address the electrochemistry of Zn in two different hydrated DESs (ChU and ChEG with ~30% HO). Fundamental electrokinetic and electrocrystallization studies based on cyclic voltammetry and chronoamperometry at different cathodic substrates are completed with a galvanostatic cycling test of Zn|Zn symmetric CR2032 coin cells, SEM imaging of electrodes and in situ SERS spectroscopy. This investigation concludes with the proposal of a specific DES/HO/ZnSO-based electrolyte that exhibits optimal functional performance, rationalized on the basis of fundamental electrochemical data, morphology evaluation and modeling of the cycling response.
在锂离子电池技术之后,具有锌阳极的可再充电化学物质由于其高理论能量密度、更低的制造成本、原材料的可用性和固有安全性而具有显著的技术前景。然而,锌阳极在水系电解液中会遭受析氢、钝化和形状变化的影响。替代电解液可以帮助解决这些问题,同时保持水系电解液的绿色和安全特性。深共晶溶剂(DESs)是用于电池电解液的有前途的绿色和低成本非水溶剂。具体而言,锌阳极在 DESs 中的循环有望是可逆的,主要归因于它们抑制枝晶的能力。然而,除了少数关于锌电镀的研究外,对 DES 中锌的阴极-阳极电化学的了解仍然非常有限。鉴于开发基于 DES 的电池电解液,必须考虑到一个潜在的缺点可能是其离子电导率低。水合共晶混合物中的水含量可高达 40%,以增加电活性物质的扩散系数并降低电解质的粘度,而不会破坏共晶性质。在这项研究中,我们研究了两种不同水合 DES(ChU 和 ChEG,含水量约为 30%)中锌的电化学。基于循环伏安法和计时安培法在不同阴极基底上的基本动电学和电结晶研究,以及锌|锌对称 CR2032 扣式电池的恒电流循环测试、电极的扫描电子显微镜成像和原位 SERS 光谱学,完成了锌的电化学研究。这项研究的结论是提出了一种特定的 DES/HO/ZnSO 基电解液,该电解液具有最佳的功能性能,这是基于基本电化学数据、形貌评估和循环响应建模来合理化的。