Suppr超能文献

三维定量构效关系和粘着斑激酶抑制剂的相对结合亲和力估计。

Three-Dimensional-QSAR and Relative Binding Affinity Estimation of Focal Adhesion Kinase Inhibitors.

机构信息

Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea.

Department of Cellular Molecular Medicine, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea.

出版信息

Molecules. 2023 Feb 2;28(3):1464. doi: 10.3390/molecules28031464.

Abstract

Precise binding affinity predictions are essential for structure-based drug discovery (SBDD). Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is overexpressed in a variety of human malignancies. Inhibition of FAK using small molecules is a promising therapeutic option for several types of cancer. Here, we conducted computational modeling of FAK-targeting inhibitors using three-dimensional structure-activity relationship (3D-QSAR), molecular dynamics (MD), and hybrid topology-based free energy perturbation (FEP) methods. The structure-activity relationship (SAR) studies between the physicochemical descriptors and inhibitory activities of the chemical compounds were performed with reasonable statistical accuracy using CoMFA and CoMSIA. These are two well-known 3D-QSAR methods based on the principle of supervised machine learning (ML). Essential information regarding residue-specific binding interactions was determined using MD and MM-PB/GBSA methods. Finally, physics-based relative binding free energy (ΔΔGRBFEA→B) terms of analogous ligands were estimated using alchemical FEP simulation. An acceptable agreement was observed between the experimental and computed relative binding free energies. Overall, the results suggested that using ML and physics-based hybrid approaches could be useful in synergy for the rational optimization of accessible lead compounds with similar scaffolds targeting the FAK receptor.

摘要

精准的结合亲和力预测对于基于结构的药物发现(SBDD)至关重要。粘着斑激酶(FAK)是酪氨酸激酶蛋白家族的一员,在多种人类恶性肿瘤中过度表达。使用小分子抑制 FAK 是几种癌症的一种有前途的治疗选择。在这里,我们使用三维结构-活性关系(3D-QSAR)、分子动力学(MD)和混合拓扑自由能扰动(FEP)方法对 FAK 靶向抑制剂进行了计算建模。使用 CoMFA 和 CoMSIA 以合理的统计精度对化合物的物理化学描述符和抑制活性之间的结构-活性关系(SAR)进行了研究。这是两种基于监督机器学习(ML)原理的著名 3D-QSAR 方法。使用 MD 和 MM-PB/GBSA 方法确定了残基特异性结合相互作用的基本信息。最后,使用基于物理的相对结合自由能(ΔΔGRBFEA→B)模拟对类似配体的物理基相对结合自由能进行了估算。观察到实验和计算相对结合自由能之间存在可接受的一致性。总的来说,这些结果表明,使用 ML 和基于物理的混合方法进行协同优化,对于以类似骨架为靶点的可及先导化合物的合理优化可能是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9708/9919860/6e62a55067a3/molecules-28-01464-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验