Suppr超能文献

大气CO浓度升高条件下大豆超级结瘤突变体的光合增益

Photosynthetic Gains in Super-Nodulating Mutants of under Elevated Atmospheric CO Conditions.

作者信息

Zhang Rose Y, Massey Baxter, Mathesius Ulrike, Clarke Victoria C

机构信息

Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.

Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, TAS 7005, Australia.

出版信息

Plants (Basel). 2023 Jan 18;12(3):441. doi: 10.3390/plants12030441.

Abstract

Legumes are generally considered to be more responsive to elevated CO (eCO) conditions due to the benefits provided by symbiotic nitrogen fixation. In response to high carbohydrate demand from nodules, legumes display autoregulation of nodulation (AON) to restrict nodules to the minimum number necessary to sustain nitrogen supply under current photosynthetic levels. AON mutants super-nodulate and typically grow smaller than wild-type plants under ambient CO. Here, we show that AON super-nodulating mutants have substantially higher biomass under eCO conditions, which is sustained through increased photosynthetic investment. We examined photosynthetic and physiological traits across super-nodulating (Root Determined Nodulation) and (Super Numeric Nodules) and non-nodulating (Nod Factor Perception) mutants. Under eCO conditions, super-nodulating plants exhibited increased rates of carboxylation (V) and electron transport (J) relative to wild-type and non-nodulating counterparts. The substantially higher rate of CO assimilation in eCO-grown super-nodulating plants was sustained through increased production of key photosynthetic enzymes, including Rieske FeS. We hypothesize that AON mutants are carbon-limited and can perform better at eCO through improved photosynthesis. Nodulating legumes, especially those with higher nitrogen fixation capability, are likely to out-perform non-nodulating plants under future CO conditions and will be important tools for understanding carbon and nitrogen partitioning under eCO conditions and future crop improvements.

摘要

由于共生固氮作用带来的益处,豆类通常被认为对高浓度二氧化碳(eCO)条件反应更敏感。为了应对根瘤对碳水化合物的高需求,豆类表现出结瘤自调控(AON),以将根瘤数量限制在维持当前光合水平下氮供应所需的最低数量。AON突变体过度结瘤,在环境二氧化碳浓度下通常比野生型植物长得小。在这里,我们表明,AON过度结瘤突变体在eCO条件下具有显著更高的生物量,这通过增加光合投入得以维持。我们研究了过度结瘤(根决定结瘤)、(超数量根瘤)和不结瘤(结瘤因子感知)突变体的光合和生理特性。在eCO条件下,与野生型和不结瘤的对应植株相比,过度结瘤的植株表现出羧化速率(V)和电子传递速率(J)增加。在eCO环境中生长的过度结瘤植株中,二氧化碳同化率显著更高,这通过包括 Rieske FeS 在内的关键光合酶产量增加得以维持。我们推测,AON突变体存在碳限制,在eCO条件下通过改善光合作用能表现得更好。在未来二氧化碳条件下,结瘤豆类,尤其是那些具有更高固氮能力的豆类,可能比不结瘤的植物表现更优,并且将成为理解eCO条件下碳和氮分配以及未来作物改良的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e42/9920600/732c33f6da0e/plants-12-00441-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验