1Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601 Australia.
2School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK.
Commun Biol. 2019 Aug 16;2:314. doi: 10.1038/s42003-019-0561-9. eCollection 2019.
C photosynthesis is characterised by a CO concentrating mechanism that operates between mesophyll and bundle sheath cells increasing CO partial pressure at the site of Rubisco and photosynthetic efficiency. Electron transport chains in both cell types supply ATP and NADPH for C photosynthesis. Cytochrome is a key control point of electron transport in C plants. To study whether C photosynthesis is limited by electron transport we constitutively overexpressed the Rieske FeS subunit in . This resulted in a higher Cytochrome content in mesophyll and bundle sheath cells without marked changes in the abundances of other photosynthetic proteins. Rieske overexpression plants showed better light conversion efficiency in both Photosystems and could generate higher proton-motive force across the thylakoid membrane underpinning an increase in CO assimilation rate at ambient and saturating CO and high light. Our results demonstrate that removing electron transport limitations can increase C photosynthesis.
C 光合作用的特点是存在一种 CO 浓缩机制,该机制在叶肉细胞和维管束鞘细胞之间起作用,提高 Rubisco 及光合作用效率的 CO 分压。两种细胞类型的电子传递链都为 C 光合作用提供 ATP 和 NADPH。细胞色素是 C 植物电子传递的关键控制点。为了研究 C 光合作用是否受到电子传递的限制,我们在 中组成型过表达 Rieske FeS 亚基。这导致叶肉细胞和维管束鞘细胞中的细胞色素含量增加,而其他光合蛋白的丰度没有明显变化。过表达 Rieske 的植物在两个光系统中表现出更好的光转化效率,并且在环境 CO 和饱和 CO 以及高光下,可以在类囊体膜中产生更高的质子动力,从而增加 CO 同化率。我们的结果表明,消除电子传递限制可以增加 C 光合作用。