Suppr超能文献

二元双网络状结构:一种用于强韧水凝胶设计的有效能量耗散系统。

Binary Double Network-like Structure: An Effective Energy-Dissipation System for Strong Tough Hydrogel Design.

作者信息

Chen Genxin, Tang Sijie, Yan Honghan, Zhu Xiongbin, Wang Huimin, Ma Liya, Mao Kang, Yang Changying, Ran Jiabing

机构信息

College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.

Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China.

出版信息

Polymers (Basel). 2023 Jan 31;15(3):724. doi: 10.3390/polym15030724.

Abstract

Currently, hydrogels simultaneously featuring high strength, high toughness, superior recoverability, and benign anti-fatigue properties have demonstrated great application potential in broad fields; thus, great efforts have been made by researchers to develop satisfactory hydrogels. Inspired by the double network (DN)-like theory, we previously reported a novel high-strength/high-toughness hydrogel which had two consecutive energy-dissipation systems, namely, the unzipping of coordinate bonds and the dissociation of the crystalline network. However, this structural design greatly damaged its stretchability, toughness recoverability, shape recoverability, and anti-fatigue capability. Thus, we realized that a soft/ductile matrix is indispensable for an advanced strong tough hydrogel. On basis of our previous work, we herein reported a modified energy-dissipation model, namely, a "binary DN-like structure" for strong tough hydrogel design for the first time. This structural model comprises three interpenetrated polymer networks: a covalent/ionic dually crosslinked tightened polymer network (stiff, first order network), a constrictive crystalline polymer network (sub-stiff, second order network), and a ductile/flexible polymer network (soft, third order network). We hypothesized that under low tension, the first order network served as the sacrificing phase through decoordination of ionic crosslinks, while the second order and third order networks together functioned as the elastic matrix phase; under high tension, the second order network worked as the energy dissipation phase (ionic crosslinks have been destroyed at the time), while the third order network played the role of the elastic matrix phase. Owing to the "binary DN-like" structure, the as-prepared hydrogel, in principle, should demonstrate enhanced energy dissipation capability, toughness/shape recoverability, and anti-fatigue/anti-tearing capability. Finally, through a series of characterizations, the unique "binary DN-like" structure was proved to fit well with our initial theoretical assumption. Moreover, compared to other energy-dissipation models, this structural design showed a significant advantage regarding comprehensive properties. Therefore, we think this design philosophy would inspire the development of advanced strong tough hydrogel in the future.

摘要

目前,同时具备高强度、高韧性、优异的可恢复性和良好的抗疲劳性能的水凝胶在广泛领域展现出了巨大的应用潜力;因此,研究人员付出了巨大努力来开发令人满意的水凝胶。受双网络(DN)类理论的启发,我们之前报道了一种新型的高强度/高韧性水凝胶,它具有两个连续的能量耗散系统,即配位键的解开和结晶网络的解离。然而,这种结构设计极大地损害了其拉伸性、韧性可恢复性、形状可恢复性和抗疲劳能力。因此,我们意识到对于一种先进的强韧水凝胶而言,柔软/可延展的基质是不可或缺的。基于我们之前的工作,我们在此首次报道了一种改进的能量耗散模型,即用于强韧水凝胶设计的“二元DN类结构”。这种结构模型由三个相互贯穿的聚合物网络组成:一个共价/离子双重交联的紧密聚合物网络(刚性的一级网络)、一个收缩性的结晶聚合物网络(次刚性的二级网络)和一个可延展/柔性的聚合物网络(柔软的三级网络)。我们假设在低张力下,一级网络通过离子交联的解配位作为牺牲相,而二级网络和三级网络共同作为弹性基质相;在高张力下,二级网络作为能量耗散相(此时离子交联已被破坏),而三级网络发挥弹性基质相的作用。由于“二元DN类”结构,所制备的水凝胶原则上应表现出增强的能量耗散能力、韧性/形状可恢复性以及抗疲劳/抗撕裂能力。最后,通过一系列表征,证明独特的“二元DN类”结构与我们最初的理论假设非常契合。此外,与其他能量耗散模型相比,这种结构设计在综合性能方面显示出显著优势。因此,我们认为这种设计理念将在未来推动先进强韧水凝胶的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5594/9921367/aff93172a3e0/polymers-15-00724-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验