Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Chem Rev. 2021 Apr 28;121(8):4309-4372. doi: 10.1021/acs.chemrev.0c01088. Epub 2021 Apr 12.
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using , and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
水凝胶是一种聚合物网络,其中浸润着水。许多动物体内的生物水凝胶,如肌肉、心脏瓣膜、软骨和肌腱,具有极高的机械性能,包括极其坚韧、强力、有弹性、粘性和耐疲劳性。这些机械性能对于水凝胶的各种应用也至关重要,包括药物输送、组织工程、医疗植入物、伤口敷料和隐形眼镜,以及传感器、执行器、电子设备、光学设备、电池、水收集器和软机器人。尽管在过去几十年中已经开发出了许多水凝胶,但在该软物质领域中,仍然存在一个核心需求,即需要一套通用的设计原则,以合理指导使用不同材料和制造方法的水凝胶设计,从而实现各种应用的极端机械和物理性能。本综述旨在协同报告:(i)实现极端机械和物理性能的水凝胶的一般设计原则,(ii)使用这些设计原则的实施策略,以及(iii)实现多种综合机械、物理、化学和生物性能的水凝胶的正交设计的未来方向。由于这些设计原则和实施策略基于通用的聚合物网络,它们也适用于其他软材料,包括弹性体和有机凝胶。总体而言,该综述不仅将为软材料的合理设计提供全面而系统的指导,还将引发关于一个基本问题的跨学科讨论:为什么大自然选择具有非常规聚合物网络的软材料来构成动物体的主要部分?