文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于图卷积网络的不规则场景文本检测。

Irregular Scene Text Detection Based on a Graph Convolutional Network.

机构信息

College of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China.

College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.

出版信息

Sensors (Basel). 2023 Jan 17;23(3):1070. doi: 10.3390/s23031070.


DOI:10.3390/s23031070
PMID:36772110
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9919283/
Abstract

Detecting irregular or arbitrary shape text in natural scene images is a challenging task that has recently attracted considerable attention from research communities. However, limited by the CNN receptive field, these methods cannot directly capture relations between distant component regions by local convolutional operators. In this paper, we propose a novel method that can effectively and robustly detect irregular text in natural scene images. First, we employ a fully convolutional network architecture based on VGG16_BN to generate text components via the estimated character center points, which can ensure a high text component detection recall rate and fewer noncharacter text components. Second, text line grouping is treated as a problem of inferring the adjacency relations of text components with a graph convolution network (GCN). Finally, to evaluate our algorithm, we compare it with other existing algorithms by performing experiments on three public datasets: ICDAR2013, CTW-1500 and MSRA-TD500. The results show that the proposed method handles irregular scene text well and that it achieves promising results on these three public datasets.

摘要

检测自然场景图像中的不规则或任意形状的文本是一项具有挑战性的任务,最近引起了研究界的广泛关注。然而,受 CNN 感受野的限制,这些方法不能通过局部卷积算子直接捕捉到远距离组件区域之间的关系。在本文中,我们提出了一种新的方法,可以有效地、稳健地检测自然场景图像中的不规则文本。首先,我们采用基于 VGG16_BN 的全卷积网络架构,通过估计的字符中心点生成文本组件,从而可以确保较高的文本组件检测召回率和较少的非字符文本组件。其次,将文本行分组视为通过图卷积网络(GCN)推断文本组件邻接关系的问题。最后,为了评估我们的算法,我们在三个公共数据集 ICDAR2013、CTW-1500 和 MSRA-TD500 上与其他现有算法进行了实验对比。结果表明,所提出的方法能够很好地处理不规则场景文本,并且在这三个公共数据集上取得了有前景的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/757cbf07ed65/sensors-23-01070-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/5f5b7ec1755a/sensors-23-01070-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/733692a95181/sensors-23-01070-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/2222f2631c89/sensors-23-01070-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/3c3ca9e13587/sensors-23-01070-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/336a67fbcb47/sensors-23-01070-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/aa5452a910ca/sensors-23-01070-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/71dff42d7f4a/sensors-23-01070-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/569ce83f8222/sensors-23-01070-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/ee7319ef4afc/sensors-23-01070-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/a827862b5716/sensors-23-01070-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/bfd0f3e9f87e/sensors-23-01070-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/757cbf07ed65/sensors-23-01070-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/5f5b7ec1755a/sensors-23-01070-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/733692a95181/sensors-23-01070-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/2222f2631c89/sensors-23-01070-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/3c3ca9e13587/sensors-23-01070-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/336a67fbcb47/sensors-23-01070-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/aa5452a910ca/sensors-23-01070-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/71dff42d7f4a/sensors-23-01070-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/569ce83f8222/sensors-23-01070-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/ee7319ef4afc/sensors-23-01070-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/a827862b5716/sensors-23-01070-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/bfd0f3e9f87e/sensors-23-01070-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9919283/757cbf07ed65/sensors-23-01070-g012.jpg

相似文献

[1]
Irregular Scene Text Detection Based on a Graph Convolutional Network.

Sensors (Basel). 2023-1-17

[2]
TextField: Learning a Deep Direction Field for Irregular Scene Text Detection.

IEEE Trans Image Process. 2019-11

[3]
R-YOLO: A Real-Time Text Detector for Natural Scenes with Arbitrary Rotation.

Sensors (Basel). 2021-1-28

[4]
Attention Guided Feature Encoding for Scene Text Recognition.

J Imaging. 2022-10-8

[5]
HGR-Net: Hierarchical Graph Reasoning Network for Arbitrary Shape Scene Text Detection.

IEEE Trans Image Process. 2023

[6]
A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images.

IEEE J Biomed Health Inform. 2022-7

[7]
A Multi-Scale Natural Scene Text Detection Method Based on Attention Feature Extraction and Cascade Feature Fusion.

Sensors (Basel). 2024-6-9

[8]
SLOAN: Scale-Adaptive Orientation Attention Network for Scene Text Recognition.

IEEE Trans Image Process. 2021

[9]
Scene Text Detection Based on Two-Branch Feature Extraction.

Sensors (Basel). 2022-8-20

[10]
Scene text detection via extremal region based double threshold convolutional network classification.

PLoS One. 2017-8-18

引用本文的文献

[1]
(HTBNet)Arbitrary Shape Scene Text Detection with Binarization of Hyperbolic Tangent and Cross-Entropy.

Entropy (Basel). 2024-6-29

本文引用的文献

[1]
Scene Uyghur Text Detection Based on Fine-Grained Feature Representation.

Sensors (Basel). 2022-6-9

[2]
CM-Net: Concentric Mask Based Arbitrary-Shaped Text Detection.

IEEE Trans Image Process. 2022

[3]
Kernel Proposal Network for Arbitrary Shape Text Detection.

IEEE Trans Neural Netw Learn Syst. 2023-11

[4]
Real-Time Scene Text Detection With Differentiable Binarization and Adaptive Scale Fusion.

IEEE Trans Pattern Anal Mach Intell. 2023-1

[5]
R-YOLO: A Real-Time Text Detector for Natural Scenes with Arbitrary Rotation.

Sensors (Basel). 2021-1-28

[6]
TextField: Learning a Deep Direction Field for Irregular Scene Text Detection.

IEEE Trans Image Process. 2019-11

[7]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索