Suppr超能文献

少即是多:深度神经网络的自适应可训练梯度辍学。

Less Is More: Adaptive Trainable Gradient Dropout for Deep Neural Networks.

机构信息

Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece.

出版信息

Sensors (Basel). 2023 Jan 24;23(3):1325. doi: 10.3390/s23031325.

Abstract

The undeniable computational power of artificial neural networks has granted the scientific community the ability to exploit the available data in ways previously inconceivable. However, deep neural networks require an overwhelming quantity of data in order to interpret the underlying connections between them, and therefore, be able to complete the specific task that they have been assigned to. Feeding a deep neural network with vast amounts of data usually ensures efficiency, but may, however, harm the network's ability to generalize. To tackle this, numerous regularization techniques have been proposed, with dropout being one of the most dominant. This paper proposes a selective gradient dropout method, which, instead of relying on dropping random weights, learns to freeze the training process of specific connections, thereby increasing the overall network's sparsity in an adaptive manner, by driving it to utilize more salient weights. The experimental results show that the produced sparse network outperforms the baseline on numerous image classification datasets, and additionally, the yielded results occurred after significantly less training epochs.

摘要

人工神经网络的不可否认的计算能力使科学界能够以前所未有的方式利用可用数据。然而,深度神经网络需要大量的数据才能解释它们之间的潜在联系,因此能够完成它们被分配的特定任务。用大量数据喂养深度神经网络通常可以确保效率,但可能会损害网络的泛化能力。为了解决这个问题,已经提出了许多正则化技术,其中 dropout 是最主要的技术之一。本文提出了一种选择性梯度 dropout 方法,该方法不是依赖于随机丢弃权重,而是学会冻结特定连接的训练过程,从而通过驱动网络利用更显著的权重,以自适应的方式增加整个网络的稀疏性。实验结果表明,生成的稀疏网络在许多图像分类数据集上的表现优于基线,并且在显著较少的训练轮次后就产生了结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验