Suppr超能文献

基于 Jensen-Shannon 和随机森林特征重要性排序的深度神经网络前向传播随机失活。

Forward propagation dropout in deep neural networks using Jensen-Shannon and random forest feature importance ranking.

机构信息

Department of Computer Engineering, Ferdows Branch, Islamic Azad University, Ferdows, Iran.

Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

出版信息

Neural Netw. 2023 Aug;165:238-247. doi: 10.1016/j.neunet.2023.05.044. Epub 2023 May 29.

Abstract

Dropout is a mechanism to prevent deep neural networks from overfitting and improving their generalization. Random dropout is the simplest method, where nodes are randomly terminated at each step of the training phase, which may lead to network accuracy reduction. In dynamic dropout, the importance of each node and its impact on the network performance is calculated, and the important nodes do not participate in the dropout. But the problem is that the importance of the nodes is not calculated consistently. A node may be considered less important and be dropped in one training epoch and on a batch of data before entering the next epoch, in which it may be an important node. On the other hand, calculating the importance of each unit in every training step is costly. In the proposed method, using random forest and Jensen-Shannon divergence, the importance of each node is calculated once. Then, in the forward propagation steps, the importance of the nodes is propagated and used in the dropout mechanism. This method is evaluated and compared with some previously proposed dropout approaches using two different deep neural network architectures on the MNIST, NorB, CIFAR10, CIFAR100, SVHN, and ImageNet datasets. The results suggest that the proposed method has better accuracy with fewer nodes and better generalizability. Also, the evaluations show that the approach has comparable complexity with other approaches and its convergence time is low as compared with state-of-the-art methods.

摘要

辍学是一种防止深度神经网络过拟合并提高其泛化能力的机制。随机辍学是最简单的方法,其中在训练阶段的每个步骤中随机终止节点,这可能导致网络精度降低。在动态辍学中,计算每个节点的重要性及其对网络性能的影响,重要节点不参与辍学。但问题是,节点的重要性不是一致计算的。一个节点在一个训练时期和在进入下一个时期之前的一批数据中可能被认为不重要而被丢弃,在这个时期中,它可能是一个重要的节点。另一方面,计算每个单元的重要性在每个训练步骤中都很昂贵。在提出的方法中,使用随机森林和 Jensen-Shannon 散度,一次计算每个节点的重要性。然后,在正向传播步骤中,节点的重要性被传播并用于辍学机制。该方法使用两种不同的深度神经网络架构在 MNIST、NorB、CIFAR10、CIFAR100、SVHN 和 ImageNet 数据集上进行了评估和比较。结果表明,该方法具有更好的准确性,更少的节点和更好的泛化能力。此外,评估表明,该方法的复杂度与其他方法相当,与最先进的方法相比,其收敛时间较低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验