School of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
Sensors (Basel). 2023 Jan 30;23(3):1522. doi: 10.3390/s23031522.
KubeEdge is an open-source platform that orchestrates containerized Internet of Things (IoT) application services in IoT edge computing environments. Based on Kubernetes, it supports heterogeneous IoT device protocols on edge nodes and provides various functions necessary to build edge computing infrastructure, such as network management between cloud and edge nodes. However, the resulting cloud-based systems are subject to several limitations. In this study, we evaluated the performance of KubeEdge in terms of the computational resource distribution and delay between edge nodes. We found that forwarding traffic between edge nodes degrades the throughput of clusters and causes service delay in edge computing environments. Based on these results, we proposed a local scheduling scheme that handles user traffic locally at each edge node. The performance evaluation results revealed that local scheduling outperforms the existing load-balancing algorithm in the edge computing environment.
KubeEdge 是一个开源平台,用于在物联网边缘计算环境中编排容器化的物联网 (IoT) 应用服务。它基于 Kubernetes,支持边缘节点上异构的 IoT 设备协议,并提供构建边缘计算基础设施所需的各种功能,例如云与边缘节点之间的网络管理。然而,由此产生的基于云的系统受到多种限制。在本研究中,我们根据边缘节点之间的计算资源分配和延迟来评估 KubeEdge 的性能。我们发现,在边缘节点之间转发流量会降低集群的吞吐量,并导致边缘计算环境中的服务延迟。基于这些结果,我们提出了一种本地调度方案,该方案在每个边缘节点本地处理用户流量。性能评估结果表明,本地调度在边缘计算环境中的表现优于现有的负载均衡算法。