CIMTT, Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile.
Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile.
Sensors (Basel). 2023 Jan 30;23(3):1533. doi: 10.3390/s23031533.
This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.
本文提出了一种利用可见光通信(VLC)和机器学习(ML)在地下通道检测 2019 年冠状病毒病(COVID-19)的新方法。我们提出了一种基于 CSK/QAM 的 VLC 系统,用于在规则正方形星座中转移 COVID-19 脱氧核糖核酸(DNA)的数学模型。使用 ML 算法对每个电泳样本中的波段进行分类,根据波段在搜索最优模型时是否对应阳性、阴性或梯级样本进行分类。复杂度研究表明,N=22i×22i,(i=3)的正方形星座获得的收益更大。性能研究表明,对于误码率(BER)=10-3,N=22i×22i,(i=0、1、2、3)的增益分别为-10 [dB]、-3 [dB]、3 [dB]和 5 [dB]。基于总共 630 个 COVID-19 样本,结果表明,最佳模型是 XGBoots,其准确率为 96.03%,高于其他模型,阳性值的召回率为 99%。