Suppr超能文献

基于机器学习的可穿戴设备估算轮椅相关活动中肩部负荷的方法。

Machine-Learning-Based Methodology for Estimation of Shoulder Load in Wheelchair-Related Activities Using Wearables.

机构信息

Rehabilitation Engineering Laboratory, Department of Health Science and Technology, ETH Zurich, 8049 Zurich, Switzerland.

Swiss Paraplegic Research, Guido A. Zächstrasse 4, 6207 Nottwil, Switzerland.

出版信息

Sensors (Basel). 2023 Feb 1;23(3):1577. doi: 10.3390/s23031577.

Abstract

There is a high prevalence of shoulder problems in manual wheelchair users (MWUs) with a spinal cord injury. How shoulder load relates to shoulder problems remains unclear. This study aimed to develop a machine-learning-based methodology to estimate the shoulder load in wheelchair-related activities of daily living using wearable sensors. Ten able-bodied participants equipped with five inertial measurement units (IMU) on their thorax, right arm, and wheelchair performed activities exemplary of daily life of MWUs. Electromyography (EMG) was recorded from the long head of the biceps and medial part of the deltoid. A neural network was trained to predict the shoulder load based on IMU and EMG data. Different cross-validation strategies, sensor setups, and model architectures were examined. The predicted shoulder load was compared to the shoulder load determined with musculoskeletal modeling. A subject-specific biLSTM model trained on a sparse sensor setup yielded the most promising results (mean correlation coefficient = 0.74 ± 0.14, relative root-mean-squared error = 8.93% ± 2.49%). The shoulder-load profiles had a mean similarity of 0.84 ± 0.10 over all activities. This study demonstrates the feasibility of using wearable sensors and neural networks to estimate the shoulder load in wheelchair-related activities of daily living.

摘要

在脊髓损伤的手动轮椅使用者(MWU)中,肩部问题的患病率很高。肩部负荷与肩部问题的关系尚不清楚。本研究旨在开发一种基于机器学习的方法,使用可穿戴传感器来估计日常轮椅活动中的肩部负荷。十名健康参与者在胸部、右臂和轮椅上配备了五个惯性测量单元(IMU),进行了典型的 MWU 日常生活活动。从肱二头肌的长头和三角肌的内侧部分记录肌电图(EMG)。使用神经网络根据 IMU 和 EMG 数据预测肩部负荷。研究了不同的交叉验证策略、传感器设置和模型架构。将预测的肩部负荷与肌肉骨骼建模确定的肩部负荷进行了比较。在稀疏传感器设置上训练的基于 biLSTM 的个体特定模型产生了最有希望的结果(平均相关系数=0.74±0.14,相对均方根误差=8.93%±2.49%)。在所有活动中,肩部负荷曲线的平均相似度为 0.84±0.10。本研究证明了使用可穿戴传感器和神经网络来估计日常轮椅活动中的肩部负荷的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7bb/9918997/a019832d54fd/sensors-23-01577-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验