Suppr超能文献

基于堆叠双向长短期记忆网络和词嵌入的深度伪造推文分类

Deepfake tweets classification using stacked Bi-LSTM and words embedding.

作者信息

Rupapara Vaibhav, Rustam Furqan, Amaar Aashir, Washington Patrick Bernard, Lee Ernesto, Ashraf Imran

机构信息

School of Computing and Information Sciences, Florida International University, Florida, United States of America.

Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.

出版信息

PeerJ Comput Sci. 2021 Oct 21;7:e745. doi: 10.7717/peerj-cs.745. eCollection 2021.

Abstract

The spread of altered media in the form of fake videos, audios, and images, has been largely increased over the past few years. Advanced digital manipulation tools and techniques make it easier to generate fake content and post it on social media. In addition, tweets with deep fake content make their way to social platforms. The polarity of such tweets is significant to determine the sentiment of people about deep fakes. This paper presents a deep learning model to predict the polarity of deep fake tweets. For this purpose, a stacked bi-directional long short-term memory (SBi-LSTM) network is proposed to classify the sentiment of deep fake tweets. Several well-known machine learning classifiers are investigated as well such as support vector machine, logistic regression, Gaussian Naive Bayes, extra tree classifier, and AdaBoost classifier. These classifiers are utilized with term frequency-inverse document frequency and a bag of words feature extraction approaches. Besides, the performance of deep learning models is analyzed including long short-term memory network, gated recurrent unit, bi-direction LSTM, and convolutional neural network+LSTM. Experimental results indicate that the proposed SBi-LSTM outperforms both machine and deep learning models and achieves an accuracy of 0.92.

摘要

在过去几年中,以虚假视频、音频和图像形式存在的篡改媒体的传播大幅增加。先进的数字处理工具和技术使生成虚假内容并将其发布在社交媒体上变得更加容易。此外,带有深度伪造内容的推文也出现在社交平台上。此类推文的极性对于确定人们对深度伪造的情绪很重要。本文提出了一种深度学习模型来预测深度伪造推文的极性。为此,提出了一种堆叠双向长短期记忆(SBi-LSTM)网络来对深度伪造推文的情绪进行分类。还研究了几种著名的机器学习分类器,如支持向量机、逻辑回归、高斯朴素贝叶斯、极端随机树分类器和AdaBoost分类器。这些分类器与词频-逆文档频率和词袋特征提取方法一起使用。此外,还分析了深度学习模型的性能,包括长短期记忆网络、门控循环单元、双向LSTM和卷积神经网络+LSTM。实验结果表明,所提出的SBi-LSTM优于机器学习模型和深度学习模型,准确率达到0.92。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d47f/8576542/2c93510c1f22/peerj-cs-07-745-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验