Suppr超能文献

基于门控注意力图神经网络的文本摘要方法。

Text Summarization Method Based on Gated Attention Graph Neural Network.

机构信息

College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.

出版信息

Sensors (Basel). 2023 Feb 2;23(3):1654. doi: 10.3390/s23031654.

Abstract

Text summarization is an information compression technology to extract important information from long text, which has become a challenging research direction in the field of natural language processing. At present, the text summary model based on deep learning has shown good results, but how to more effectively model the relationship between words, more accurately extract feature information and eliminate redundant information is still a problem of concern. This paper proposes a graph neural network model GA-GNN based on gated attention, which effectively improves the accuracy and readability of text summarization. First, the words are encoded using a concatenated sentence encoder to generate a deeper vector containing local and global semantic information. Secondly, the ability to extract key information features is improved by using gated attention units to eliminate local irrelevant information. Finally, the loss function is optimized from the three aspects of contrastive learning, confidence calculation of important sentences, and graph feature extraction to improve the robustness of the model. Experimental validation was conducted on a CNN/Daily Mail dataset and MR dataset, and the results showed that the model in this paper outperformed existing methods.

摘要

文本摘要是一种从长文本中提取重要信息的信息压缩技术,已成为自然语言处理领域的一个具有挑战性的研究方向。目前,基于深度学习的文本摘要模型已经取得了较好的效果,但如何更有效地建模词与词之间的关系,更准确地提取特征信息并消除冗余信息,仍然是一个值得关注的问题。本文提出了一种基于门控注意力的图神经网络模型 GA-GNN,有效地提高了文本摘要的准确性和可读性。首先,使用拼接的句子编码器对单词进行编码,生成包含局部和全局语义信息的更深层次的向量。其次,通过使用门控注意力单元来消除局部无关信息,提高了提取关键信息特征的能力。最后,从对比学习、重要句子置信度计算和图特征提取三个方面优化损失函数,提高模型的鲁棒性。在 CNN/Daily Mail 数据集和 MR 数据集上进行了实验验证,结果表明本文提出的模型优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0935/9920191/975d1c605bfc/sensors-23-01654-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验