Suppr超能文献

光电容积脉搏波血压驱动的高血压识别:一项初步研究。

Photoplethysmography Driven Hypertension Identification: A Pilot Study.

机构信息

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.

School of Electronic, Electrical and Systems Engineering, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, UK.

出版信息

Sensors (Basel). 2023 Mar 22;23(6):3359. doi: 10.3390/s23063359.

Abstract

To prevent and diagnose hypertension early, there has been a growing demand to identify its states that align with patients. This pilot study aims to research how a non-invasive method using photoplethysmographic (PPG) signals works together with deep learning algorithms. A portable PPG acquisition device (Max30101 photonic sensor) was utilized to (1) capture PPG signals and (2) wirelessly transmit data sets. In contrast to traditional feature engineering machine learning classification schemes, this study preprocessed raw data and applied a deep learning algorithm (LSTM-Attention) directly to extract deeper correlations between these raw datasets. The Long Short-Term Memory (LSTM) model underlying a gate mechanism and memory unit enables it to handle long sequence data more effectively, avoiding gradient disappearance and possessing the ability to solve long-term dependencies. To enhance the correlation between distant sampling points, an attention mechanism was introduced to capture more data change features than a separate LSTM model. A protocol with 15 healthy volunteers and 15 hypertension patients was implemented to obtain these datasets. The processed result demonstrates that the proposed model could present satisfactory performance (accuracy: 0.991; precision: 0.989; recall: 0.993; F1-score: 0.991). The model we proposed also demonstrated superior performance compared to related studies. The outcome indicates the proposed method could effectively diagnose and identify hypertension; thus, a paradigm to cost-effectively screen hypertension could rapidly be established using wearable smart devices.

摘要

为了及早预防和诊断高血压,人们越来越需要识别与患者相符的高血压状态。本试点研究旨在研究如何使用非侵入性的光电容积脉搏波(PPG)信号方法与深度学习算法相结合。使用便携式 PPG 采集设备(Max30101 光子传感器)来:(1)捕获 PPG 信号;(2)无线传输数据集。与传统的基于特征工程的机器学习分类方案不同,本研究对原始数据进行预处理,并直接应用深度学习算法(LSTM-Attention)来提取这些原始数据集中更深层次的相关性。基于门机制和存储单元的长短期记忆(LSTM)模型使其能够更有效地处理长序列数据,避免梯度消失,并具有解决长期依赖关系的能力。为了增强远距离采样点之间的相关性,引入了注意力机制来捕获比单独的 LSTM 模型更多的数据变化特征。实施了一项包含 15 名健康志愿者和 15 名高血压患者的方案以获取这些数据集。处理结果表明,所提出的模型可以呈现出令人满意的性能(准确性:0.991;精度:0.989;召回率:0.993;F1 分数:0.991)。与相关研究相比,该模型还表现出了优越的性能。结果表明,该方法可以有效地诊断和识别高血压;因此,使用可穿戴智能设备可以快速建立一种具有成本效益的高血压筛查范式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验