Suppr超能文献

基于第四腰椎外周定量 CT 扫描的深度学习性别估计:概念验证研究。

Deep learning in sex estimation from a peripheral quantitative computed tomography scan of the fourth lumbar vertebra-a proof-of-concept study.

机构信息

Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, 00014, Finland.

Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.

出版信息

Forensic Sci Med Pathol. 2023 Dec;19(4):534-540. doi: 10.1007/s12024-023-00586-6. Epub 2023 Feb 11.

Abstract

Sex estimation is a key element in the analysis of unknown skeletal remains. The vertebrae display clear sex discrepancy and have proven accurate in conventional morphometric sex estimation. This proof-of-concept study aimed to investigate the possibility to develop a deep learning algorithm for sex estimation even from a single peripheral quantitative computed tomography (pQCT) slice of the fourth lumbar vertebra (L4). The study utilized a total of 117 vertebrae from the Terry Anatomical Collection. There were 58 male and 59 female cadavers, all of the white ethnicity, with the average age at death 49 years and a range of 24 to 77 years. A coronal pQCT scan was taken from the midway of the L4 corpus. Sex estimation was performed in a total of 19 neural network architectures implemented in the AIDeveloper software. Of the explored architectures, a LeNet5-based algorithm reached the highest accuracy of 86.4% in the test set. Sex-specific classification rates were 90.9% among males and 81.8% among females. This preliminary finding advances the field by encouraging and directing future research on artificial intelligence-based methods in sex estimation from individual skeletal traits such as the vertebrae. Combining quickly obtained imaging data with automated deep learning algorithms may establish a valuable pipeline for forensic anthropology and provide aid when combined with traditional methods.

摘要

性别鉴定是分析未知骨骼遗骸的关键要素。椎体显示出明显的性别差异,并且已经在传统的形态计量学性别鉴定中得到了验证。这项概念验证研究旨在探讨即使从第四腰椎(L4)的单个外周定量计算机断层扫描(pQCT)切片中,是否有可能开发用于性别鉴定的深度学习算法。该研究共使用了特里解剖收藏中的 117 个椎体。这些尸体均为白人,其中 58 具为男性,59 具为女性,平均死亡年龄为 49 岁,年龄范围为 24 至 77 岁。在 L4 体的中间位置进行了冠状面 pQCT 扫描。在 AIDeveloper 软件中实现的总共 19 种神经网络架构中进行了性别鉴定。在所探索的架构中,基于 LeNet5 的算法在测试集中达到了 86.4%的最高准确率。男性的分类准确率为 90.9%,女性的分类准确率为 81.8%。这一初步发现通过鼓励和指导未来基于人工智能的方法从单个骨骼特征(如椎体)进行性别鉴定的研究,推动了该领域的发展。将快速获得的成像数据与自动化深度学习算法相结合,可能为法医人类学建立一个有价值的管道,并与传统方法结合使用时提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a0/10752832/bfb0d0e54bd5/12024_2023_586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验