Visser Esther, Genet Sylvia A A M, de Kock Remco P P A, van den Borne Ben E E M, Youssef-El Soud Maggy, Belderbos Huub N A, Stege Gerben, de Saegher Marleen E A, van 't Westeinde Susan C, Brunsveld Luc, Broeren Maarten A C, van de Kerkhof Daan, Deiman Birgit A L M, Eduati Federica, Scharnhorst Volkher
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Catharina Hospital Eindhoven, Eindhoven, the Netherlands; Máxima Medical Center, Eindhoven/Veldhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands.
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Catharina Hospital Eindhoven, Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
Lung Cancer. 2023 Apr;178:28-36. doi: 10.1016/j.lungcan.2023.01.014. Epub 2023 Feb 1.
Pathologic subtyping of tissue biopsies is the gold standard for the diagnosis of lung cancer (LC), which could be complicated in cases of e.g. inconclusive tissue biopsies or unreachable tumors. The diagnosis of LC could be supported in a minimally invasive manner using protein tumor markers (TMs) and circulating tumor DNA (ctDNA) measured in liquid biopsies (LBx). This study evaluates the performance of LBx-based decision-support algorithms for the diagnosis of LC and subtyping into small- and non-small-cell lung cancer (SCLC and NSCLC) aiming to directly impact clinical practice.
In this multicenter prospective study (NL9146), eight protein TMs (CA125, CA15.3, CEA, CYFRA 21-1, HE4, NSE, proGRP and SCCA) and ctDNA mutations in EGFR, KRAS and BRAF were analyzed in blood of 1096 patients suspected of LC. The performance of individual and combined TMs to identify LC, NSCLC or SCLC was established by evaluating logistic regression models at pre-specified positive predictive values (PPV) of ≥95% or ≥98%. The most informative protein TMs included in the multi-parametric models were selected by recursive feature elimination.
Single TMs could identify LC, NSCLC and SCLC patients with 46%, 25% and 40% sensitivity, respectively, at pre-specified PPVs. Multi-parametric models combining TMs and ctDNA significantly improved sensitivities to 65%, 67% and 50%, respectively.
In patients suspected of LC, the LBx-based decision-support algorithms allowed identification of about two-thirds of all LC and NSCLC patients and half of SCLC patients. These models therefore show clinical value and may support LC diagnostics, especially in patients for whom pathologic subtyping is impossible or incomplete.
组织活检的病理亚型分类是肺癌(LC)诊断的金标准,但在例如组织活检结果不明确或肿瘤无法触及的情况下可能会很复杂。使用液体活检(LBx)中测量的蛋白质肿瘤标志物(TMs)和循环肿瘤DNA(ctDNA),可以以微创方式辅助LC的诊断。本研究评估基于LBx的决策支持算法在LC诊断及亚型分类为小细胞肺癌和非小细胞肺癌(SCLC和NSCLC)中的性能,旨在直接影响临床实践。
在这项多中心前瞻性研究(NL9146)中,对1096例疑似LC患者的血液进行了分析,检测了8种蛋白质TMs(CA125、CA15.3、CEA、CYFRA 21-1、HE4、NSE、proGRP和SCCA)以及EGFR、KRAS和BRAF中的ctDNA突变。通过在预先设定的≥95%或≥98%的阳性预测值(PPV)下评估逻辑回归模型,确定单个和组合TMs识别LC、NSCLC或SCLC的性能。通过递归特征消除选择多参数模型中包含的最具信息量的蛋白质TMs。
在预先设定的PPV下,单个TMs分别能以46%、25%和40%的灵敏度识别LC、NSCLC和SCLC患者。结合TMs和ctDNA的多参数模型显著提高了灵敏度,分别达到65%、67%和50%。
在疑似LC的患者中,基于LBx的决策支持算法能够识别约三分之二的LC和NSCLC患者以及一半的SCLC患者。因此,这些模型具有临床价值,可能有助于LC的诊断,特别是在病理亚型分类不可能或不完整的患者中。