文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于细粒度图像分类的特征重定位网络。

Feature relocation network for fine-grained image classification.

作者信息

Zhao Peng, Li Yi, Tang Baowei, Liu Huiting, Yao Sheng

机构信息

Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601, China; School of Computer Science and Technology, Anhui University, Hefei 230601, China.

Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601, China; School of Computer Science and Technology, Anhui University, Hefei 230601, China.

出版信息

Neural Netw. 2023 Apr;161:306-317. doi: 10.1016/j.neunet.2023.01.050. Epub 2023 Feb 4.


DOI:10.1016/j.neunet.2023.01.050
PMID:36774868
Abstract

In fine-grained image classification, there are only very subtle differences between classes. It is challenging to learn local discriminative features and remove distractive features in fine-grained image classification. Existing fine-grained image classification methods learn discriminative feature mainly via manual part annotation or attention mechanisms. However, due to the large intraclass variance and interclass similarity, the discriminative information and distractive information still are not distinguished effectively. To address this problem, we propose a feature relocation network (FRe-Net) which takes advantage of the different natures of features learned from different stages of the network. Our network consists of a distractive feature learning module and a relocated high-level feature learning module. In the distractive feature learning module, we propose to exploit the difference between low-level features and high-level features to design a distractive loss L, which guides the attention to locate distractive regions more accurately. In the relocated high-level feature learning module, we enhance the representing capacity of the middle-level feature via the attention module and subtract the distractive feature learned from the distractive feature learning module in order to learn more local discriminative features. In end-to-end model training, the distractive feature learning module and the relocated high-level feature learning module are beneficial to each other via joint optimization. We conducted comprehensive experiments on three benchmark datasets widely used in fine-grained image classification. The experimental results show that FRe-Net achieves state-of-the-art performance, which validates the effectiveness of FRe-Net.

摘要

在细粒度图像分类中,类别之间只有非常细微的差异。在细粒度图像分类中学习局部判别特征并去除干扰特征具有挑战性。现有的细粒度图像分类方法主要通过手动部分标注或注意力机制来学习判别特征。然而,由于类内方差大且类间相似度高,判别信息和干扰信息仍然没有得到有效区分。为了解决这个问题,我们提出了一种特征重定位网络(FRe-Net),它利用从网络不同阶段学习到的特征的不同性质。我们的网络由一个干扰特征学习模块和一个重定位的高级特征学习模块组成。在干扰特征学习模块中,我们建议利用低级特征和高级特征之间的差异来设计一个干扰损失L,它引导注意力更准确地定位干扰区域。在重定位的高级特征学习模块中,我们通过注意力模块增强中级特征的表示能力,并减去从干扰特征学习模块中学到的干扰特征,以便学习更多的局部判别特征。在端到端模型训练中,干扰特征学习模块和重定位的高级特征学习模块通过联合优化相互受益。我们在细粒度图像分类中广泛使用的三个基准数据集上进行了全面实验。实验结果表明,FRe-Net实现了当前最优性能,这验证了FRe-Net的有效性。

相似文献

[1]
Feature relocation network for fine-grained image classification.

Neural Netw. 2023-4

[2]
Fine-Grained 3D-Attention Prototypes for Few-Shot Learning.

Neural Comput. 2020-9

[3]
Centralized contrastive loss with weakly supervised progressive feature extraction for fine-grained common thorax disease retrieval in chest x-ray.

Med Phys. 2023-6

[4]
P-CNN: Part-Based Convolutional Neural Networks for Fine-Grained Visual Categorization.

IEEE Trans Pattern Anal Mach Intell. 2022-2

[5]
Fine-grained image classification method based on hybrid attention module.

Front Neurorobot. 2024-5-3

[6]
A mutual reconstruction network model for few-shot classification of histological images: addressing interclass similarity and intraclass diversity.

Quant Imaging Med Surg. 2024-8-1

[7]
BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification.

IEEE Trans Image Process. 2021

[8]
A Multi-Group Multi-Stream attribute Attention network for fine-grained zero-shot learning.

Neural Netw. 2024-11

[9]
Significant feature suppression and cross-feature fusion networks for fine-grained visual classification.

Sci Rep. 2024-10-14

[10]
A Graph-Related High-Order Neural Network Architecture via Feature Aggregation Enhancement for Identification Application of Diseases and Pests.

Comput Intell Neurosci. 2022

引用本文的文献

[1]
Interweaving Insights: High-Order Feature Interaction for Fine-Grained Visual Recognition.

Int J Comput Vis. 2025

[2]
Spatial-frequency feature fusion network for small dataset fine-grained image classification.

Sci Rep. 2025-3-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索