Suppr超能文献

一种用于分析层状电生理记录中振荡发生器的物理神经质量模型框架。

A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings.

机构信息

Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain; Center of Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Department of Psychology and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States.

出版信息

Neuroimage. 2023 Apr 15;270:119938. doi: 10.1016/j.neuroimage.2023.119938. Epub 2023 Feb 11.

Abstract

Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.

摘要

皮质功能源自多尺度网络的相互作用,可以使用神经质量模型 (NMM) 在较高水平上进行研究,该模型代表大量神经元的平均活动。在这里,我们首先提供了一个新的框架,称为层状 NMM,简称 LaNMM,我们将传导物理与 NMM 相结合,以模拟电生理测量。然后,我们利用这个框架从猕猴前额叶皮层采集的分层解析数据推断振荡发生器的位置。我们定义了一个能够产生耦合慢波和快波的最小模型,并优化 LaNMM 特定的参数以适应多接触记录。我们使用优化函数对候选模型进行排名,该函数评估模型和数据之间功能连接 (FC) 的匹配程度,其中 FC 由不同皮质深度的双极电压测量之间的协方差定义。最佳解决方案系列通过选择导致浅层快速活动和大多数深度缓慢活动的锥体细胞及其突触的位置来再现观察到的电生理学的 FC,这与最近的文献建议一致。最后,我们讨论了这种混合建模框架如何更普遍地用于推断皮质电路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验