Klein Liane, Pothof Frederick, Raducanu Bogdan C, Klon-Lipok Johanna, Shapcott Katharine A, Musa Silke, Andrei Alexandru, Aarts Arno Aa, Paul Oliver, Singer Wolf, Ruther Patrick
Ernst Strüngmann Institute (ESI) gGmbH for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, D-60528, Frankfurt am Main, Germany. Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, D-60438, Frankfurt am Main, Germany. Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, Max von Laue Str. 13, D-60438, Frankfurt am Main, Germany. These authors have contributed equally to this work.
J Neural Eng. 2020 Apr 29;17(2):026036. doi: 10.1088/1741-2552/ab8436.
The analysis of interactions among local populations of neurons in the cerebral cortex (e.g. within cortical microcolumns) requires high resolution and high channel count recordings from chronically implanted laminar microelectrode arrays. The request for high-density recordings of a large number of recording sites can presently only be accomplished by probes realized using complementary metal-oxide-semiconductor (CMOS) technology. In preparation for their use in non-human primates, we aimed for neural probe validation in a head-fixed approach analyzing the long-term recording capability.
We examined chronically implanted silicon-based laminar probes, realized using a CMOS technology in combination with micromachining, to record from the primary visual cortex (V1) of a monkey. We used a passive CMOS probe that had 128 electrodes arranged at a pitch of 22.5 µm in four columns and 32 rows on a slender shank. In order to validate the performance of a dedicated microdrive, the overall dimensions of probe and interface boards were chosen to be compatible with the final active CMOS probe comprising integrated circuitry.
Using the passive probe, we recorded simultaneously local field potentials (LFP) and spiking multiunit activity (MUA) in V1 of an awake behaving macaque monkey. We found that an insertion through the dura and subsequent readjustments of the chronically implanted neural probe was possible and allowed us to record stable LFPs for more than five months. The quality of MUA degraded within the first month but remained sufficiently high to permit mapping of receptive fields during the full recording period.
We conclude that the passive silicon probe enables semi-chronic recordings of high quality of LFP and MUA for a time span exceeding five months. The new microdrive compatible with a commercial recording chamber successfully demonstrated the readjustment of the probe position while the implemented plug structure effectively reduced brain tissue movement relative to the probe.
分析大脑皮层中局部神经元群体之间的相互作用(例如在皮层微柱内)需要从长期植入的层状微电极阵列进行高分辨率和高通道数记录。目前,对大量记录位点进行高密度记录的要求只能通过使用互补金属氧化物半导体(CMOS)技术实现的探针来完成。为了准备将其用于非人类灵长类动物,我们旨在通过头部固定方法对神经探针进行验证,分析其长期记录能力。
我们检查了使用CMOS技术结合微加工实现的长期植入的硅基层状探针,以记录猴子初级视觉皮层(V1)的信号。我们使用了一个无源CMOS探针,在一个细长的柄上有128个电极,以22.5 µm的间距排列成四列32行。为了验证专用微驱动器的性能,探针和接口板的整体尺寸被选择为与包含集成电路的最终有源CMOS探针兼容。
使用无源探针,我们在一只清醒行为的猕猴的V1中同时记录了局部场电位(LFP)和尖峰多单元活动(MUA)。我们发现,穿过硬脑膜插入并随后对长期植入的神经探针进行重新调整是可行的,并且使我们能够记录超过五个月的稳定LFP。MUA的质量在第一个月内下降,但在整个记录期间仍足够高,以允许绘制感受野。
我们得出结论,无源硅探针能够在超过五个月的时间跨度内对LFP和MUA进行高质量的半慢性记录。与商业记录室兼容的新型微驱动器成功展示了探针位置的重新调整,同时所采用的插头结构有效地减少了脑组织相对于探针的移动。