Deng Xingdong, Chen Wangyang, Zhou Qingya, Zheng Yuming, Li Hongbao, Liao Shunyi, Biljecki Filip
Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China; Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring and Early Warning, Guangzhou 510030, China.
Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China; Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring and Early Warning, Guangzhou 510030, China.
Sci Total Environ. 2023 May 1;871:162134. doi: 10.1016/j.scitotenv.2023.162134. Epub 2023 Feb 10.
Road transport is a prominent source of carbon emissions. However, fine-grained regional estimations on road carbon dioxide (CO2) emissions are still lacking. This study estimates road CO2 emissions in Guangdong Province, China, at high spatiotemporal resolution, with a bottom-up framework leveraging massive vehicle trajectory data. We unveil the spatiotemporal pattern of regional road CO2 emissions and highlight the contrasts among cities. The Greater Bay Area (GBA) is found to produce 76 % of the total emissions, wherein Guangzhou emits the most while Shenzhen has the highest emission intensity. Emission agglomeration is still an under-explored field, which we advance in this paper. We propose Quantile-based Hierarchical DBSCAN (QH-DBSCAN) to explore road CO2 emission agglomeration in GBA. Our method is the first one to identify the specific location and scope of emission hotspots. Emission hotspots exhibit significant concentration on major urban centers. Considering emission characteristics from multiple perspectives, we derive six emission categories, including four emission zones and two emission connectors. The density-based property of our method results in spatially contiguous regions with similar emission patterns. Accordingly, we divide policy zones and propose targeted strategies for road carbon reduction. The study provides new technologies and insights to achieve regional sustainable development.
道路运输是碳排放的一个重要来源。然而,目前仍缺乏对道路二氧化碳(CO₂)排放的细粒度区域估算。本研究利用自下而上的框架,借助海量车辆轨迹数据,以高时空分辨率估算了中国广东省的道路CO₂排放量。我们揭示了区域道路CO₂排放的时空模式,并突出了各城市之间的差异。研究发现,大湾区(GBA)的排放量占总排放量的76%,其中广州排放量最高,而深圳的排放强度最高。排放集聚仍是一个尚未充分探索的领域,我们在本文中对其进行了推进。我们提出基于分位数的层次密度聚类算法(QH-DBSCAN)来探索大湾区道路CO₂排放集聚情况。我们的方法是首个能够识别排放热点具体位置和范围的方法。排放热点在主要城市中心呈现出显著的集中分布。从多个角度考虑排放特征,我们划分出六种排放类别,包括四个排放区和两个排放连接区。我们方法基于密度的特性导致具有相似排放模式的区域在空间上相互毗邻。据此,我们划分了政策区域,并提出了针对性的道路碳减排策略。该研究为实现区域可持续发展提供了新技术和新见解。