Suppr超能文献

机器学习预测北大西洋海域(1998-2021 年)的日海表二甲基硫浓度和排放通量。

Machine learning for prediction of daily sea surface dimethylsulfide concentration and emission flux over the North Atlantic Ocean (1998-2021).

机构信息

Italian National Research Council, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Bologna 40129, Italy; Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21500, Egypt.

Italian National Research Council, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Bologna 40129, Italy.

出版信息

Sci Total Environ. 2023 May 1;871:162123. doi: 10.1016/j.scitotenv.2023.162123. Epub 2023 Feb 10.

Abstract

As the most ubiquitous natural source of sulfur in the atmosphere, dimethylsulfide (DMS) promotes aerosol formation in marine environments, impacting cloud radiative forcing and precipitation, eventually influencing regional and global climate. In this study, we propose a machine learning predictive algorithm based on Gaussian process regression (GPR) to model the distribution of daily DMS concentrations in the North Atlantic waters over 24 years (1998-2021) at 0.25° × 0.25° spatial resolution. The model was built using DMS observations from cruises, combined with satellite-derived oceanographic data and Copernicus-modelled data. Further comparison was made with the previously employed machine learning methods (i.e., artificial neural network and random forest regression) and the existing empirical DMS algorithms. The proposed GPR outperforms the other methods for predicting DMS, displaying the highest coefficient of determination (R) value of 0.71 and the least root mean square error (RMSE) of 0.21. Notably, DMS regional patterns are associated with the spatial distribution of phytoplankton biomass and the thickness of the ocean mixed layer, displaying high DMS concentrations above 50°N from June to August. The amplitude, onset, and duration of the DMS annual cycle vary significantly across different regions, as revealed by the k-means++ clustering. Based on the GPR model output, the sea-to-air flux in the North Atlantic from March to September is estimated to be 3.04 Tg S, roughly 44 % lower than the estimates based on extrapolations of in-situ data. The present study demonstrates the effectiveness of a novel method for estimating seawater DMS surface concentration at unprecedented space and time resolutions. As a result, we are able to capture high-frequency spatial and temporal patterns in DMS variability. Better predictions of DMS concentration and derived sea-to-air flux will improve the modeling of biogenic sulfur aerosol concentrations in the atmosphere and reduce aerosol-cloud interaction uncertainties in climate models.

摘要

作为大气中最普遍的天然硫源,二甲基硫(DMS)促进了海洋环境中气溶胶的形成,影响云辐射强迫和降水,最终影响区域和全球气候。在本研究中,我们提出了一种基于高斯过程回归(GPR)的机器学习预测算法,以模拟北大西洋水域中 24 年来(1998-2021 年)每日 DMS 浓度的分布,空间分辨率为 0.25°×0.25°。该模型是使用来自巡航的 DMS 观测值,结合卫星衍生的海洋学数据和哥白尼模型化数据构建的。进一步与先前使用的机器学习方法(即人工神经网络和随机森林回归)和现有的经验 DMS 算法进行了比较。所提出的 GPR 方法在预测 DMS 方面表现优于其他方法,显示出最高的决定系数(R)值为 0.71,最小的均方根误差(RMSE)为 0.21。值得注意的是,DMS 的区域模式与浮游植物生物量的空间分布和海洋混合层的厚度有关,6 月至 8 月期间,50°N 以上地区 DMS 浓度较高。不同地区的 DMS 年周期的幅度、开始时间和持续时间差异很大,这是通过 K-means++聚类揭示的。基于 GPR 模型输出,估计北大西洋 3 月至 9 月的海气通量为 3.04Tg S,比基于原位数据外推的估计值低约 44%。本研究证明了一种新方法在前所未有的空间和时间分辨率下估计海水 DMS 表面浓度的有效性。因此,我们能够捕捉到 DMS 变异性的高频空间和时间模式。更好地预测 DMS 浓度和衍生的海气通量将改善大气中生物源硫气溶胶浓度的建模,并减少气候模型中气溶胶-云相互作用的不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验