Suppr超能文献

不同掺杂 VSe 单层作为吸附剂和气体传感材料,用于清除和检测 SF 分解产物。

Different Doping of VSe Monolayers as Adsorbent and Gas Sensing Material for Scavenging and Detecting SF Decomposed Species.

机构信息

Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China.

School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China.

出版信息

Langmuir. 2023 Feb 21;39(7):2618-2630. doi: 10.1021/acs.langmuir.2c03018. Epub 2023 Feb 12.

Abstract

The application of intrinsic and transition metals (TM)-doped VSe monolayers for the detection of faulty gases in SF electrical insulated equipment is investigated based on first-principles calculations. The electron density difference, density of state, and adsorption energy are analyzed to further clarify the reaction mechanism. The results show that the intrinsic VSe monolayer has weak adsorption performance for SO and SOF molecules, but the adsorption properties of the system are significantly improved after doping TM atoms. Among them, the TM-doped VSe monolayer has better sensing performance for SO than for SOF molecules. Furthermore, the modulating effect of biaxial strain on the gas-sensitive properties of TM-doped VSe system is also analyzed. Finally, the recovery time of the gas molecules on the solid adsorbent is evaluated. The results confirm that the TM-doped VSe monolayer can be used as a novel sensing material or scavenger to ensure the normal operation of SF electrical insulated equipment. This will provide a prospective insight for experimenters to implement VSe-based sensing materials or scavengers.

摘要

基于第一性原理计算,研究了本征和过渡金属(TM)掺杂 VSe 单层在 SF 电气绝缘设备中检测故障气体的应用。通过分析电子密度差、态密度和吸附能,进一步阐明了反应机制。结果表明,本征 VSe 单层对 SO 和 SOF 分子的吸附性能较弱,但掺杂 TM 原子后,体系的吸附性能显著提高。其中,TM 掺杂 VSe 单层对 SO 的传感性能优于 SOF 分子。此外,还分析了双轴应变对 TM 掺杂 VSe 体系气敏性能的调制作用。最后,评估了气体分子在固体吸附剂上的恢复时间。结果证实,TM 掺杂 VSe 单层可用作新型传感材料或清除剂,以确保 SF 电气绝缘设备的正常运行。这将为实验人员实施基于 VSe 的传感材料或清除剂提供有前景的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验