Suppr超能文献

镍掺杂氧化锌单层对六氟化硫分解产物的吸附行为及外加电场的影响

Adsorption Behavior of Ni-Doped ZnO Monolayer upon SF Decomposed Components and Effect of the Applied Electric Field.

作者信息

Liu Min

机构信息

Chongqing Industry Polytechnic College, Chongqing 401120, China.

出版信息

ACS Omega. 2020 Sep 7;5(37):24118-24124. doi: 10.1021/acsomega.0c03663. eCollection 2020 Sep 22.

Abstract

In this article, Ni-doped ZnO (Ni-ZnO) monolayer is proposed as a potential sensing material for detection of two SF decomposed components (namely, SO and SOF), based on the density functional theory (DFT) method, to monitor the operation status of SF insulation devices in the power system. The Ni-doping effect on the physicochemical properties of the pure ZnO monolayer is first studied, with the binding energy ( ) calculated as -1.49 eV. Then, the adsorption of a Ni-ZnO monolayer upon SO and SOF molecules shows that the Ni-ZnO monolayer exhibits strong chemisorption upon the two gas species, with the adsorption energy ( ) obtained as -2.38 and -2.19 eV, respectively. The electronic properties of the Ni-ZnO monolayer upon gas adsorption are studied through the density-of-state (DOS) analysis, whereas the band structure (BS) and work function (WF) analysis provide the sensing mechanism of the Ni-ZnO monolayer upon two gases. In addition, the charge-transfer behavior during adsorption in the applied electric fields is analyzed to expound the possibility of Ni-ZnO monolayer as a field-effect-transistor gas sensor. Our calculations can stimulate the study on adsorption and sensing behaviors of TM-ZnO monolayers for their applications in many fields.

摘要

在本文中,基于密度泛函理论(DFT)方法,提出将镍掺杂的氧化锌(Ni-ZnO)单层作为检测两种六氟化硫(SF)分解成分(即SO和SOF)的潜在传感材料,以监测电力系统中SF绝缘设备的运行状态。首先研究了镍掺杂对纯氧化锌单层物理化学性质的影响,计算得到的结合能( )为-1.49 eV。然后,Ni-ZnO单层对SO和SOF分子的吸附表明,Ni-ZnO单层对这两种气体表现出强烈的化学吸附,吸附能( )分别为-2.38和-2.19 eV。通过态密度(DOS)分析研究了气体吸附后Ni-ZnO单层的电子性质,而能带结构(BS)和功函数(WF)分析提供了Ni-ZnO单层对两种气体的传感机制。此外,分析了外加电场下吸附过程中的电荷转移行为,以阐明Ni-ZnO单层作为场效应晶体管气体传感器的可能性。我们的计算可以推动对TM-ZnO单层在许多领域应用中的吸附和传感行为的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d16d/7513549/f4088174c57f/ao0c03663_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验