Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Institut für Geologie, Hamburg, Germany.
Senckenberg am Meer, Abteilung Meeresforschung, Wilhelmshaven, Germany.
Geobiology. 2023 Jul;21(4):491-506. doi: 10.1111/gbi.12549. Epub 2023 Feb 12.
Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon-Congo-Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB-B and CAB-C) with apparent active methane seepage and one site (CAB-D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB-C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24-01 clade. The presence of abundant C-depleted lipid biomarkers including fatty acids (n-C , n-C , n-C ), various 4-mono- and 4,4-dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB-C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α-methylcholest-8(14)-en-3β,25-diol is interpreted to be a specific biomarker for the Hyd24-01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB-C experiment at the REGAB pockmark.
甲烷渗漏的特点是形成自生碳酸盐,其中许多碳酸盐具有腐蚀表面和次生孔隙,据信这些腐蚀表面和次生孔隙是由微生物碳酸盐溶解引起的。好氧甲烷氧化和硫氧化是两种能够在甲烷渗漏处引起碳酸盐腐蚀的过程。虽然在实验室实验中证实了好氧甲烷营养菌溶解碳酸盐的潜力,但迄今为止,这一过程尚未在环境中进行研究。在这里,我们报告了在加蓬-刚果-安哥拉被动大陆边缘的 REGAB 陷坑中进行的碳酸盐腐蚀实验,其中大理石立方体在两个有明显活跃甲烷渗漏的地点(CAB-B 和 CAB-C)和一个没有甲烷渗漏的地点(CAB-D)部署了 2.5 年。暴露于活跃渗漏的大理石立方体(实验 CAB-C)被发现受到一种新型微生物侵蚀的影响。基于 16S rRNA 基因分析,附着在生物侵蚀大理石上的生物膜主要由好氧甲烷营养菌组成,主要属于未培养的 Hyd24-01 进化枝。存在大量的 C 贫乏脂质生物标志物,包括脂肪酸(n-C 、 n-C 、 n-C )、各种 4-单-和 4,4-二甲基甾醇和二孢醇,这与 CAB-C 生物膜中好氧甲烷营养菌的优势相一致。在好氧甲烷营养菌的脂质中,不常见的 4α-甲基胆甾-8(14)-烯-3β,25-二醇被解释为 Hyd24-01 进化枝的特异性生物标志物。纹理、遗传和有机地球化学证据的结合表明,好氧甲烷营养菌是 REGAB 陷坑 CAB-C 实验中观察到的碳酸盐溶解的主要驱动因素。