Suppr超能文献

热力学选择:机制与情景

Thermodynamic selection: mechanisms and scenarios.

作者信息

Babajanyan S G, Koonin E V, Allahverdyan A E

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

Alikahanyan National Laboratory (Yerevan Physics Institute), 2 Alikhanyan Brothers Street, Yerevan 0036, Armenia.

出版信息

New J Phys. 2022 May;24(5). doi: 10.1088/1367-2630/ac6531. Epub 2022 May 5.

Abstract

Thermodynamic selection is an indirect competition between agents feeding on the same energy resource and obeying the laws of thermodynamics. We examine scenarios of this selection, where the agent is modeled as a heat-engine coupled to two thermal baths and extracting work from the high-temperature bath. The agents can apply different work-extracting, game-theoretical strategies, e.g. the maximum power or the maximum efficiency. They can also have a fixed structure or be adaptive. Depending on whether the resource (i.e. the high-temperature bath) is infinite or finite, the fitness of the agent relates to the work-power or the total extracted work. These two selection scenarios lead to increasing or decreasing efficiencies of the work-extraction, respectively. The scenarios are illustrated via plant competition for sunlight, and the competition between different ATP production pathways. We also show that certain general concepts of game-theory and ecology-the prisoner's dilemma and the maximal power principle-emerge from the thermodynamics of competing agents. We emphasize the role of adaptation in developing efficient work-extraction mechanisms.

摘要

热力学选择是在消耗相同能量资源并遵循热力学定律的主体之间的间接竞争。我们研究了这种选择的情景,其中主体被建模为与两个热库耦合并从高温热库提取功的热机。主体可以应用不同的提取功的博弈论策略,例如最大功率或最大效率。它们也可以具有固定结构或具有适应性。根据资源(即高温热库)是无限的还是有限的,主体的适应性分别与功功率或总提取功相关。这两种选择情景分别导致提取功的效率增加或降低。通过植物对阳光的竞争以及不同ATP产生途径之间的竞争来说明这些情景。我们还表明,博弈论和生态学的某些一般概念——囚徒困境和最大功率原理——源自竞争主体的热力学。我们强调适应性在开发高效功提取机制中的作用。

相似文献

1
Thermodynamic selection: mechanisms and scenarios.
New J Phys. 2022 May;24(5). doi: 10.1088/1367-2630/ac6531. Epub 2022 May 5.
2
Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012129. doi: 10.1103/PhysRevE.89.012129. Epub 2014 Jan 21.
3
Hamilton's rule and kin competition in a finite kin population.
J Theor Biol. 2021 Nov 21;529:110862. doi: 10.1016/j.jtbi.2021.110862. Epub 2021 Aug 13.
4
Emergence of super cooperation of prisoner's dilemma games on scale-free networks.
PLoS One. 2015 Feb 2;10(2):e0116429. doi: 10.1371/journal.pone.0116429. eCollection 2015.
5
Maximizing cooperation in the prisoner's dilemma evolutionary game via optimal control.
Phys Rev E. 2021 Jan;103(1-1):012304. doi: 10.1103/PhysRevE.103.012304.
6
Dynamic aspiration based on Win-Stay-Lose-Learn rule in spatial prisoner's dilemma game.
PLoS One. 2021 Jan 4;16(1):e0244814. doi: 10.1371/journal.pone.0244814. eCollection 2021.
8
Escape from Prisoner's Dilemma in RNA phage phi6.
Am Nat. 2003 Mar;161(3):497-505. doi: 10.1086/367880.
9
Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine.
Entropy (Basel). 2020 Sep 8;22(9):1002. doi: 10.3390/e22091002.
10
Reply to "Comment on 'Stochastic dynamics of the prisoner's dilemma with cooperation facilitators' ".
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):046102. doi: 10.1103/PhysRevE.88.046102. Epub 2013 Oct 31.

引用本文的文献

本文引用的文献

1
Physical bioenergetics: Energy fluxes, budgets, and constraints in cells.
Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2026786118.
2
Dynamic and thermodynamic models of adaptation.
Phys Life Rev. 2021 Jul;37:17-64. doi: 10.1016/j.plrev.2021.03.001. Epub 2021 Mar 17.
3
Trade-off between somatic and germline repair in a vertebrate supports the expensive germ line hypothesis.
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8973-8979. doi: 10.1073/pnas.1918205117. Epub 2020 Apr 3.
4
Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines.
Mol Biol Evol. 2019 Dec 1;36(12):2813-2822. doi: 10.1093/molbev/msz190.
5
Mechanisms for achieving high speed and efficiency in biomolecular machines.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5902-5907. doi: 10.1073/pnas.1812149116. Epub 2019 Mar 8.
6
Best reply structure and equilibrium convergence in generic games.
Sci Adv. 2019 Feb 20;5(2):eaat1328. doi: 10.1126/sciadv.aat1328. eCollection 2019 Feb.
7
Physical foundations of biological complexity.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8678-E8687. doi: 10.1073/pnas.1807890115. Epub 2018 Aug 27.
8
A variational approach to niche construction.
J R Soc Interface. 2018 Apr;15(141). doi: 10.1098/rsif.2017.0685.
9
Correction to: 'The Warburg Effect: How Does it Benefit Cancer Cells?': [Trends in Biochemical Sciences, 41 (2016) 211].
Trends Biochem Sci. 2016 Mar;41(3):287. doi: 10.1016/j.tibs.2016.01.004. Epub 2016 Feb 11.
10
Decision-making in plants under competition.
Nat Commun. 2017 Dec 21;8(1):2235. doi: 10.1038/s41467-017-02147-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验