Bolhuis Koen, Mulder Rosa H, de Mol Casper Louk, Defina Serena, Warrier Varun, White Tonya, Tiemeier Henning, Muetzel Ryan L, Cecil Charlotte A M
Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands.
Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands.
JCPP Adv. 2022 Nov 16;2(4). doi: 10.1002/jcv2.12113. eCollection 2022 Dec.
Although it is well-established that both genetics and the environment influence brain development, they are typically examined separately. Here, we aimed to prospectively investigate the interactive effects of genetic variants-from a genome-wide approach-and early life stress (ELS) on child subcortical brain structures, and their association with subsequent mental health problems.
Primary analyses were conducted using data from the Generation R Study ( = 2257), including genotype and cumulative prenatal and postnatal ELS scores (encompassing life events, contextual risk, parental risk, interpersonal risk, direct victimisation). Neuroimaging data were collected at age 10 years, including intracranial and subcortical brain volumes (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus). Genome-wide association and genome-wide-by-environment interaction analyses (GWEIS, run separately for prenatal/postnatal ELS) were conducted for eight brain outcomes (i.e., 24 genome-wide analyses) in the Generation R Study (discovery). Polygenic scores (PGS) using the resulting weights were calculated in an independent (target) cohort (adolescent brain cognitive development Study; = 10,751), to validate associations with corresponding subcortical volumes and examine links to later mother-reported internalising and externalising problems.
One GWEIS-prenatal stress locus was associated with caudate volume (rs139505895, mapping onto and ) and two GWEIS-postnatal stress loci with the accumbens (rs2397823 and rs3130008, mapping onto and ). Functional annotation revealed that these genes play a role in neuronal plasticity and synaptic function, and have been implicated in neuro-developmental phenotypes, for example, intellectual disability, autism, and schizophrenia. None of these associations survived a more stringent correction for multiple testing across all analysis sets. In the validation sample, all PGS were associated with their respective brain volumes, but no PGS associated with any subcortical volume. None of the PGS associated with internalising or externalising problems.
This study lends novel suggestive insights into gene-environment interplay on the developing brain as well as pointing to promising candidate loci for future replication and mechanistic studies.
尽管遗传学和环境因素对大脑发育的影响已得到充分证实,但通常是分别进行研究的。在此,我们旨在前瞻性地研究来自全基因组方法的基因变异与早期生活压力(ELS)对儿童皮层下脑结构的交互作用,以及它们与后续心理健康问题的关联。
使用来自Generation R研究(n = 2257)的数据进行初步分析,包括基因型以及产前和产后累积ELS评分(包括生活事件、环境风险、父母风险、人际风险、直接受害情况)。在10岁时收集神经影像学数据,包括颅内和皮层下脑体积(伏隔核、杏仁核、尾状核、海马体、苍白球、壳核、丘脑)。在Generation R研究(发现阶段)中,针对八个脑指标(即24次全基因组分析)进行全基因组关联分析和全基因组与环境交互作用分析(GWEIS,产前/产后ELS分别进行)。使用所得权重计算多基因分数(PGS),并在一个独立的(目标)队列(青少年大脑认知发展研究;n = 10,751)中进行计算,以验证与相应皮层下体积的关联,并检查与后期母亲报告的内化和外化问题的联系。
一个GWEIS - 产前应激位点与尾状核体积相关(rs139505895,定位于[具体位置1]和[具体位置2]),两个GWEIS - 产后应激位点与伏隔核相关(rs2397823和rs3130008,定位于[具体位置3]和[具体位置4])。功能注释显示这些基因在神经元可塑性和突触功能中起作用,并且与神经发育表型有关,例如智力残疾、自闭症和精神分裂症。在所有分析集中,经过更严格的多重检验校正后,这些关联均未成立。在验证样本中,所有PGS均与其各自的脑体积相关,但没有PGS与任何皮层下体积相关。没有PGS与内化或外化问题相关。
本研究为发育中的大脑上的基因 - 环境相互作用提供了新的有启发性的见解,并指出了未来复制和机制研究中有前景的候选位点。