Zhou Weichen, Karan Kalpita R, Gu Wenjin, Klein Hans-Ulrich, Sturm Gabriel, De Jager Philip L, Bennett David A, Hirano Michio, Picard Martin, Mills Ryan E
Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA.
bioRxiv. 2023 Apr 21:2023.02.03.527065. doi: 10.1101/2023.02.03.527065.
The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species and recently demonstrated to occur in rare instances from one human generation to the next . Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals. Compared to circulating immune cells (n=389), post-mitotic brain tissue (n=798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, more brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures WGS design in a human fibroblast model that recapitulates several molecular hallmarks of aging . These longitudinal experiments revealed a gradual accumulation of one Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived -mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human post-mitotic tissues produce functionally-relevant human Numts over timescales shorter than previously assumed.
线粒体DNA转移到真核生物的核基因组中(核线粒体DNA)已被证明与非人类物种的寿命有关,并且最近有研究表明这种转移在人类中极为罕见地会隔代发生。在此,我们通过两种方式研究了人类中的核线粒体DNA生成动态。首先,我们对来自不同个体的1187份尸检脑和血液样本中的核线粒体DNA进行了定量分析。与循环免疫细胞(n = 389)相比,有丝分裂后的脑组织(n = 798)含有更多的核线粒体DNA,这与其潜在的体细胞积累一致。在脑样本中,我们观察到背外侧前额叶皮质中的体细胞核线粒体DNA插入比小脑样本富集了5.5倍,这表明脑核线粒体DNA是在发育过程中或整个生命周期中自发产生的。此外,更多的脑核线粒体DNA与更早的死亡率相关。在无认知障碍且较年轻时死亡的个体的大脑中,每失去十年生命所携带的核线粒体DNA比长寿个体大约多2个。其次,我们在一个能够重现衰老的几个分子特征的人类成纤维细胞模型中,使用重复测量全基因组测序设计测试了核线粒体DNA的动态转移。这些纵向实验显示,大约每13天会逐渐积累一个核线粒体DNA。核线粒体DNA生成与大规模基因组不稳定性无关,不太可能由细胞克隆性驱动。包括慢性糖皮质激素信号传导或损害线粒体氧化磷酸化(OxPhos)在内的靶向药理学扰动仅适度增加了核线粒体DNA生成的速率,而来自患者的表现出线粒体DNA不稳定性的突变细胞积累核线粒体DNA的速度比健康供体快4.7倍。综合来看,我们的数据记录了人类细胞中的自发核线粒体DNA生成,并证明了脑皮质体细胞核线粒体DNA与人类寿命之间的关联。这些发现为有丝分裂后组织之间的线粒体-核水平基因转移在比先前假设更短的时间尺度上产生功能相关的人类核线粒体DNA提供了可能性。