Suppr超能文献

通过对乳腺癌临床队列进行多平台多重图像分析实现稳健的生物标志物发现。

Robust biomarker discovery through multiplatform multiplex image analysis of breast cancer clinical cohorts.

作者信息

Eng Jennifer, Bucher Elmar, Hu Zhi, Sanders Melinda, Chakravarthy Bapsi, Gonzalez Paula, Pietenpol Jennifer A, Gibbs Summer L, Sears Rosalie C, Chin Koei

机构信息

Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA.

Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA.

出版信息

bioRxiv. 2023 May 15:2023.01.31.525753. doi: 10.1101/2023.01.31.525753.

Abstract

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and enable development of spatial biomarkers to predict patient response to immunotherapy and other therapeutics. However, spatial biomarker discovery is often carried out on a single patient cohort or imaging technology, limiting statistical power and increasing the likelihood of technical artifacts. In order to analyze multiple patient cohorts profiled on different platforms, we developed methods for comparative data analysis from three disparate multiplex imaging technologies: 1) cyclic immunofluorescence data we generated from 102 breast cancer patients with clinical follow-up, in addition to publicly available 2) imaging mass cytometry and 3) multiplex ion-beam imaging data. We demonstrate similar single-cell phenotyping results across breast cancer patient cohorts imaged with these three technologies and identify cellular abundance and proximity-based biomarkers with prognostic value across platforms. In multiple platforms, we identified lymphocyte infiltration as independently associated with longer survival in triple negative and high-proliferation breast tumors. Then, a comparison of nine spatial analysis methods revealed robust spatial biomarkers. In estrogen receptor-positive disease, quiescent stromal cells close to tumor were more abundant in good prognosis tumors while tumor neighborhoods of mixed fibroblast phenotypes were enriched in poor prognosis tumors. In triple-negative breast cancer (TNBC), macrophage proximity to tumor and B cell proximity to T cells were greater in good prognosis tumors, while tumor neighborhoods of vimentin-positive fibroblasts were enriched in poor prognosis tumors. We also tested previously published spatial biomarkers in our ensemble cohort, reproducing the positive prognostic value of isolated lymphocytes and lymphocyte occupancy and failing to reproduce the prognostic value of tumor-immune mixing score in TNBC. In conclusion, we demonstrate assembly of larger clinical cohorts from diverse platforms to aid in prognostic spatial biomarker identification and validation.

摘要

组织的空间分析有望阐明肿瘤与微环境的相互作用,并有助于开发空间生物标志物,以预测患者对免疫疗法和其他治疗方法的反应。然而,空间生物标志物的发现通常是在单一患者队列或成像技术上进行的,这限制了统计效力,并增加了出现技术假象的可能性。为了分析在不同平台上进行分析的多个患者队列,我们开发了用于对来自三种不同的多重成像技术的数据分析的方法:1)我们从102例有临床随访的乳腺癌患者中生成的循环免疫荧光数据,此外还有公开可用的2)成像质谱流式细胞术数据和3)多重离子束成像数据。我们展示了用这三种技术成像的乳腺癌患者队列中相似的单细胞表型分析结果,并确定了跨平台具有预后价值的细胞丰度和基于邻近性的生物标志物。在多个平台上,我们发现淋巴细胞浸润与三阴性和高增殖性乳腺肿瘤的较长生存期独立相关。然后,对九种空间分析方法的比较揭示了强大的空间生物标志物。在雌激素受体阳性疾病中,预后良好的肿瘤中靠近肿瘤的静止基质细胞更为丰富,而混合成纤维细胞表型的肿瘤邻域在预后不良的肿瘤中更为富集。在三阴性乳腺癌(TNBC)中,预后良好的肿瘤中巨噬细胞与肿瘤的邻近性以及B细胞与T细胞的邻近性更大,而波形蛋白阳性成纤维细胞的肿瘤邻域在预后不良的肿瘤中更为富集。我们还在我们的综合队列中测试了先前发表的空间生物标志物,重现了孤立淋巴细胞和淋巴细胞占有率的阳性预后价值,但未能重现TNBC中肿瘤-免疫混合评分的预后价值。总之,我们展示了从不同平台组装更大的临床队列,以帮助进行预后空间生物标志物的识别和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64cb/10201616/b9a8056034aa/nihpp-2023.01.31.525753v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验