文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

外泌体相关基因风险模型的鉴定,以评估三阴性乳腺癌的肿瘤免疫微环境并预测预后。

Characterization of Exosome-Related Gene Risk Model to Evaluate the Tumor Immune Microenvironment and Predict Prognosis in Triple-Negative Breast Cancer.

机构信息

Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.

出版信息

Front Immunol. 2021 Oct 1;12:736030. doi: 10.3389/fimmu.2021.736030. eCollection 2021.


DOI:10.3389/fimmu.2021.736030
PMID:34659224
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8517454/
Abstract

BACKGROUND: As a kind of small membrane vesicles, exosomes are secreted by most cell types from multivesicular endosomes, including tumor cells. The relationship between exosomes and immune response plays a vital role in the occurrence and development of tumors. Nevertheless, the interaction between exosomes and the microenvironment of tumors remains unclear. Therefore, we set out to study the influence of exosomes on the triple-negative breast cancer (TNBC) microenvironment. METHOD: One hundred twenty-one exosome-related genes were downloaded from ExoBCD database, and IVL, CXCL13, and AP2S1 were final selected because of the association with TNBC prognosis. Based on the sum of the expression levels of these three genes, provided by The Cancer Genome Atlas (TCGA), and the regression coefficients, an exosome risk score model was established. With the median risk score value, the patients in the two databases were divided into high- and low-risk groups. R clusterProfiler package was employed to compare the different enrichment ways between the two groups. The ESTIMATE and CIBERSORT methods were employed to analyze ESTIMATE Score and immune cell infiltration. Finally, the correlation between the immune checkpoint-related gene expression levels and exosome-related risk was analyzed. The relationship between selected gene expression and drug sensitivity was also detected. RESULTS: Different risk groups exhibited distinct result of TNBC prognosis, with a higher survival rate in the low-risk group than in the high-risk group. The two groups were enriched by immune response and biological process pathways. A better overall survival (OS) was demonstrated in patients with high scores of immune and ESTIMATE rather than ones with low scores. Subsequently, we found that CD4-activated memory T cells and M1 macrophages were both upregulated in the low-risk group, whereas M2 macrophages and activated mast cell were downregulated in the low-risk group in patients from the TCGA and GEO databases, respectively. Eventually, four genes previously proposed to be targets of immune checkpoint inhibitors were evaluated, resulting in the expression levels of CD274, CTLA4, LAG3, and TIM3 being higher in the low-risk group than high-risk group. CONCLUSION: The results of our study suggest that exosome-related risk model was related to the prognosis and ratio of immune cell infiltration in patients with TNBC. This discovery may make contributions to improve immunotherapy for TNBC.

摘要

背景:外泌体作为一种小膜囊泡,由包括肿瘤细胞在内的大多数细胞类型从多泡内体中分泌。外泌体与免疫反应之间的关系在肿瘤的发生和发展中起着至关重要的作用。然而,外泌体与肿瘤微环境之间的相互作用尚不清楚。因此,我们着手研究外泌体对三阴性乳腺癌(TNBC)微环境的影响。

方法:从 ExoBCD 数据库中下载了 121 个外泌体相关基因,最终选择了 IVL、CXCL13 和 AP2S1,因为它们与 TNBC 预后有关。基于 TCGA 提供的这三个基因的表达水平总和及其回归系数,建立了一个外泌体风险评分模型。根据两个数据库中患者的中位风险评分值,将其分为高风险组和低风险组。使用 R clusterProfiler 包比较两组之间的不同富集方式。采用 ESTIMATE 和 CIBERSORT 方法分析 ESTIMATE 评分和免疫细胞浸润。最后,分析免疫检查点相关基因表达水平与外泌体相关风险的相关性。还检测了选定基因表达与药物敏感性的关系。

结果:不同风险组的 TNBC 预后结果明显不同,低风险组的生存率高于高风险组。两组通过免疫反应和生物过程途径富集。与低评分组相比,高评分组的患者具有更好的总生存期(OS)。随后,我们发现 TCGA 和 GEO 数据库中的低风险组中 CD4 激活的记忆 T 细胞和 M1 巨噬细胞均上调,而低风险组中 M2 巨噬细胞和激活的肥大细胞下调。最后,评估了先前提出的四个作为免疫检查点抑制剂靶点的基因,结果表明低风险组中 CD274、CTLA4、LAG3 和 TIM3 的表达水平高于高风险组。

结论:本研究结果表明,外泌体相关风险模型与 TNBC 患者的预后和免疫细胞浸润比例有关。这一发现可能有助于改善 TNBC 的免疫治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/e89411f31c5f/fimmu-12-736030-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/4cf20a6f26f7/fimmu-12-736030-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/99bf4b179faf/fimmu-12-736030-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/74138ea65975/fimmu-12-736030-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/9999d288a53e/fimmu-12-736030-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/a22774105544/fimmu-12-736030-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/c81719f53dc9/fimmu-12-736030-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/734be7273c61/fimmu-12-736030-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/ae76b945eb9b/fimmu-12-736030-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/d4703c855d5d/fimmu-12-736030-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/51fdffca2b54/fimmu-12-736030-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/262e293e3ec5/fimmu-12-736030-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/710f48d4373c/fimmu-12-736030-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/e89411f31c5f/fimmu-12-736030-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/4cf20a6f26f7/fimmu-12-736030-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/99bf4b179faf/fimmu-12-736030-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/74138ea65975/fimmu-12-736030-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/9999d288a53e/fimmu-12-736030-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/a22774105544/fimmu-12-736030-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/c81719f53dc9/fimmu-12-736030-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/734be7273c61/fimmu-12-736030-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/ae76b945eb9b/fimmu-12-736030-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/d4703c855d5d/fimmu-12-736030-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/51fdffca2b54/fimmu-12-736030-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/262e293e3ec5/fimmu-12-736030-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/710f48d4373c/fimmu-12-736030-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feeb/8517454/e89411f31c5f/fimmu-12-736030-g013.jpg

相似文献

[1]
Characterization of Exosome-Related Gene Risk Model to Evaluate the Tumor Immune Microenvironment and Predict Prognosis in Triple-Negative Breast Cancer.

Front Immunol. 2021

[2]
An exosome-related long non-coding RNAs risk model could predict survival outcomes in patients with breast cancer.

Sci Rep. 2022-12-24

[3]
Development of an IFNγ response-related signature for predicting the survival of cutaneous melanoma.

Cancer Med. 2020-11

[4]
Identification of an exosome-related signature associated with prognosis and immune infiltration in breast cancer.

Sci Rep. 2023-10-24

[5]
Genomic stratification based on microenvironment immune types and PD-L1 for tailoring therapeutic strategies in bladder cancer.

BMC Cancer. 2021-5-31

[6]
ALG3 predicts poor prognosis and increases resistance to anti-PD-1 therapy through modulating PD-L1 N-link glycosylation in TNBC.

Int Immunopharmacol. 2024-10-25

[7]
Analysis of Expression Pattern and Prognostic Value of the Heparanase in Breast Cancer Through CD274/CTLA-4 Immune Checkpoint Proteins.

Technol Cancer Res Treat. 2024

[8]
Comprehensive analysis of a 14 immune-related gene pair signature to predict the prognosis and immune features of gastric cancer.

Int Immunopharmacol. 2020-12

[9]
Tumor Mutation Burden, Immune Cell Infiltration, and Construction of Immune-Related Genes Prognostic Model in Head and Neck Cancer.

Int J Med Sci. 2021

[10]
Development and Clinical Validation of Novel 8-Gene Prognostic Signature Associated With the Proportion of Regulatory T Cells by Weighted Gene Co-Expression Network Analysis in Uterine Corpus Endometrial Carcinoma.

Front Immunol. 2021

引用本文的文献

[1]
Multidimensional insights into exosomes in hepatocellular carcinoma: from genesis to clinical application.

Front Immunol. 2025-8-13

[2]
Estimating progression of Alzheimer's disease with extracellular vesicle-related multi-omics risk models.

Front Aging Neurosci. 2025-7-24

[3]
Gene signatures associated with exosomes as diagnostic markers of postpartum depression and their role in immune infiltration.

Front Endocrinol (Lausanne). 2025-7-17

[4]
Development of an immune scoring system based on exosome-related gene expression for prognosis and treatment response prediction in breast cancer.

Discov Oncol. 2025-5-30

[5]
Role of M2 macrophage-derived exosomes in cancer drug resistance via noncoding RNAs.

Discov Oncol. 2025-5-12

[6]
A spatial transcriptomics study of MES-like and mono/macro cells in gliomas.

Sci Rep. 2025-4-13

[7]
Identification of exosome-related genes associated with prognosis and immune infiltration features in pancreatic cancer.

Discov Oncol. 2025-2-17

[8]
Integration of transcriptome and Mendelian randomization analyses in exploring the extracellular vesicle-related biomarkers of diabetic kidney disease.

Ren Fail. 2025-12

[9]
Integrating mitochondrial and lysosomal gene analysis for breast cancer prognosis using machine learning.

Sci Rep. 2025-1-27

[10]
The microenvironment cell index is a novel indicator for the prognosis and therapeutic regimen selection of cancers.

J Transl Med. 2025-1-13

本文引用的文献

[1]
Immune Checkpoint Inhibition for Triple-Negative Breast Cancer: Current Landscape and Future Perspectives.

Front Oncol. 2021-5-19

[2]
Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B.

Theranostics. 2021

[3]
The Role of Exosomes in Breast Cancer Diagnosis.

Biomedicines. 2021-3-18

[4]
Exploration of a Robust and Prognostic Immune Related Gene Signature for Cervical Squamous Cell Carcinoma.

Front Mol Biosci. 2021-3-3

[5]
Perspectives on Triple-Negative Breast Cancer: Current Treatment Strategies, Unmet Needs, and Potential Targets for Future Therapies.

Cancers (Basel). 2020-8-24

[6]
Tissue-resident memory T cells in breast cancer control and immunotherapy responses.

Nat Rev Clin Oncol. 2020-2-28

[7]
Serum exosomal-annexin A2 is associated with African-American triple-negative breast cancer and promotes angiogenesis.

Breast Cancer Res. 2020-1-28

[8]
A review of cancer immunotherapy toxicity.

CA Cancer J Clin. 2020-1-16

[9]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

[10]
Breast Cancer Cells and PD-1/PD-L1 Blockade Upregulate the Expression of PD-1, CTLA-4, TIM-3 and LAG-3 Immune Checkpoints in CD4 T Cells.

Vaccines (Basel). 2019-10-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索