Suppr超能文献

基于医患沟通数据驱动的智能医疗指导和推荐模型。

An intelligent medical guidance and recommendation model driven by patient-physician communication data.

机构信息

School of Economics and Management, Shanghai University of Political Science and Law, Shanghai, China.

School of Economics and Management, Shanghai University of Sport, Shanghai, China.

出版信息

Front Public Health. 2023 Jan 26;11:1098206. doi: 10.3389/fpubh.2023.1098206. eCollection 2023.

Abstract

Based on the online patient-physician communication data, this study used natural language processing and machine learning algorithm to construct a medical intelligent guidance and recommendation model. First, based on 16,935 patient main complaint data of nine diseases, this study used the word2vec, long-term and short-term memory neural networks, and other machine learning algorithms to construct intelligent department guidance and recommendation model. Besides, taking ophthalmology as an example, it also used the word2vec, TF-IDF, and cosine similarity algorithm to construct an intelligent physician recommendation model. Furthermore, to recommend physicians with better service quality, this study introduced the information amount of physicians' feedback to the recommendation evaluation indicator as the text and voice service quality. The results show that the department guidance model constructed by long-term and short-term memory neural networks has the best effect. The precision is 82.84%, and the F1-score is 82.61% in the test set. The prediction effect of the LSTM model is better than TextCNN, random forest, K-nearest neighbor, and support vector machine algorithms. In the intelligent physician recommendation model, under certain parameter settings, the recommendation effect of the hybrid recommendation model based on similar patients and similar physicians has certain advantages over the model of similar patients and similar physicians.

摘要

基于在线医患沟通数据,本研究使用自然语言处理和机器学习算法构建了一个医疗智能指导和推荐模型。首先,基于九种疾病的 16935 例患者主诉数据,本研究使用 word2vec、长短期记忆神经网络和其他机器学习算法构建了智能科室指导和推荐模型。此外,以眼科为例,还使用 word2vec、TF-IDF 和余弦相似度算法构建了智能医生推荐模型。此外,为了推荐服务质量更好的医生,本研究将医生反馈的信息量引入推荐评价指标,作为文本和语音服务质量。结果表明,长短期记忆神经网络构建的科室指导模型效果最佳,在测试集中的准确率为 82.84%,F1 得分为 82.61%。LSTM 模型的预测效果优于 TextCNN、随机森林、K-最近邻和支持向量机算法。在智能医生推荐模型中,在一定参数设置下,基于相似患者和相似医生的混合推荐模型的推荐效果优于相似患者和相似医生的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a090/9909411/3f63e40744dc/fpubh-11-1098206-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验