Emmert-Streib Frank, Yang Zhen, Feng Han, Tripathi Shailesh, Dehmer Matthias
Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland.
Institute of Biosciences and Medical Technology, Tampere, Finland.
Front Artif Intell. 2020 Feb 28;3:4. doi: 10.3389/frai.2020.00004. eCollection 2020.
Deep learning models stand for a new learning paradigm in artificial intelligence (AI) and machine learning. Recent breakthrough results in image analysis and speech recognition have generated a massive interest in this field because also applications in many other domains providing big data seem possible. On a downside, the mathematical and computational methodology underlying deep learning models is very challenging, especially for interdisciplinary scientists. For this reason, we present in this paper an introductory review of deep learning approaches including Deep Feedforward Neural Networks (D-FFNN), Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), Autoencoders (AEs), and Long Short-Term Memory (LSTM) networks. These models form the major core architectures of deep learning models currently used and should belong in any data scientist's toolbox. Importantly, those core architectural building blocks can be composed flexibly-in an almost Lego-like manner-to build new application-specific network architectures. Hence, a basic understanding of these network architectures is important to be prepared for future developments in AI.
深度学习模型代表了人工智能(AI)和机器学习中的一种新的学习范式。图像分析和语音识别方面最近取得的突破性成果引发了人们对该领域的极大兴趣,因为在许多其他提供大数据的领域似乎也有可能应用。不利的一面是,深度学习模型背后的数学和计算方法极具挑战性,尤其是对于跨学科科学家而言。因此,我们在本文中对深度学习方法进行了介绍性综述,包括深度前馈神经网络(D-FFNN)、卷积神经网络(CNN)、深度信念网络(DBN)、自动编码器(AE)和长短期记忆(LSTM)网络。这些模型构成了当前使用的深度学习模型的主要核心架构,应该成为任何数据科学家工具箱中的一部分。重要的是,那些核心架构构建块可以灵活组合——几乎是以乐高积木的方式——来构建新的特定应用网络架构。因此,对这些网络架构有基本的了解对于为人工智能的未来发展做好准备很重要。