Fields Jon, Tandy Tyler, Halihan Todd, Ross Randall, Beak Doug, Neill Russell, Groves Justin
Robert S. Kerr Environmental Research Center, US Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
Boone Pickens School of Geology, Oklahoma State University, 105 Noble Research Center, Stillwater, OK 74075, USA.
J Geophys Eng. 2022 Oct;19(5):1095-1110. doi: 10.1093/jge/gxac073. Epub 2022 Oct 6.
Enhanced aquifer recharge (EAR) is defined as any engineered structure or enhanced natural feature designed to convey stormwater, surface water or wastewater directly into an aquifer (e.g. aquifer storage and recovery (ASR) wells) or into the vadose zone eventually percolating to an aquifer (e.g. spreading basins, dry well, etc.; USEPA 2021). Identifying the storage and flow capabilities of complex aquifers can improve the efficacy of many conceptual site models (CSM) for sites considered for ASR projects. In a karst setting, the EAR process may be able to take advantage of natural surficial features and the increased storage capacity of karst aquifers to improve recharge to groundwater. However, the suitability for an EAR project in a karst setting depends on the maturity of the karst and its preceding epikarst. The focus of flow within the epikarst causes enlargement of fractures and karst conduits. Thus, the storage and transmissivity within the karst vary greatly. Electrical resistivity imaging (ERI) is a well-known geophysical tool for mapping fractures and sinkholes, typical in karst settings. Locating enhanced water conveyance structures of a karst aquifer can improve the design and operation of an EAR site. This study investigated the hydraulic connection between shallow and deep groundwater using ERI to identify potential flow pathways and to improve our understanding of the storage mechanisms of the epikarst. The results presented in this paper validate the effectiveness of ERI in characterizing karst/epikarst and delineating soil, bedrock and local faults and fractures in the subsurface.
强化含水层补给(EAR)的定义是,任何旨在将雨水、地表水或废水直接输送到含水层(如含水层储存与回灌(ASR)井)或输送到包气带最终渗入含水层(如漫流盆地、旱井等;美国环境保护局,2021年)的工程结构或强化自然特征。识别复杂含水层的储存和流动能力,可以提高许多针对考虑进行ASR项目的场地的概念性场地模型(CSM)的有效性。在岩溶地区,EAR过程可能能够利用自然地表特征和岩溶含水层增加的储存能力,来改善对地下水的补给。然而,岩溶地区EAR项目的适用性取决于岩溶及其上覆表层岩溶的发育程度。表层岩溶内水流的集中导致裂缝和岩溶管道扩大。因此,岩溶地区的储存和导水率差异很大。电阻率成像(ERI)是一种众所周知的地球物理工具,用于绘制岩溶地区常见的裂缝和落水洞。确定岩溶含水层强化的输水结构,可以改善EAR场地的设计和运行。本研究利用ERI调查浅层和深层地下水之间的水力联系,以识别潜在的水流路径,并增进我们对表层岩溶储存机制的理解。本文给出的结果验证了ERI在表征岩溶/表层岩溶以及描绘地下土壤、基岩和局部断层及裂缝方面的有效性。