Sinha Dipro, Sharma Anu, Mishra Dwijesh Chandra, Rai Anil, Lal Shashi Bhushan, Kumar Sanjeev, Farooqi Moh Samir, Chaturvedi Krishna Kumar
1Research Scholar, PG School, ICAR-IARI, New Delhi-110012, India; 2Division of Agriculture Bioinformatics, ICAR-IASRI, New Delhi- 110012, India.
Curr Genomics. 2022 Jun 10;23(2):137-146. doi: 10.2174/1389202923666220413114659.
Binning of metagenomic reads is an active area of research, and many unsupervised machine learning-based techniques have been used for taxonomic independent binning of metagenomic reads. It is important to find the optimum number of the cluster as well as develop an efficient pipeline for deciphering the complexity of the microbial genome. Applying unsupervised clustering techniques for binning requires finding the optimal number of clusters beforehand and is observed to be a difficult task. This paper describes a novel method, MetaConClust, using coverage information for grouping of contigs and automatically finding the optimal number of clusters for binning of metagenomics data using a consensus-based clustering approach. The coverage of contigs in a metagenomics sample has been observed to be directly proportional to the abundance of species in the sample and is used for grouping of data in the first phase by MetaConClust. The Partitioning Around Medoid (PAM) method is used for clustering in the second phase for generating bins with the initial number of clusters determined automatically through a consensus-based method. Finally, the quality of the obtained bins is tested using silhouette index, rand Index, recall, precision, and accuracy. Performance of MetaConClust is compared with recent methods and tools using benchmarked low complexity simulated and real metagenomic datasets and is found better for unsupervised and comparable for hybrid methods. This is suggestive of the proposition that the consensus-based clustering approach is a promising method for automatically finding the number of bins for metagenomics data.
宏基因组 reads 的分箱是一个活跃的研究领域,许多基于无监督机器学习的技术已被用于宏基因组 reads 的分类独立分箱。找到最佳的聚类数量以及开发一个有效的流程来解读微生物基因组的复杂性很重要。应用无监督聚类技术进行分箱需要事先找到最佳的聚类数量,并且这被认为是一项艰巨的任务。本文描述了一种新方法 MetaConClust,它使用覆盖信息对重叠群进行分组,并使用基于共识的聚类方法自动找到宏基因组学数据分箱的最佳聚类数量。已观察到宏基因组学样本中重叠群的覆盖度与样本中物种的丰度成正比,并且在第一阶段 MetaConClust 用其对数据进行分组。在第二阶段使用围绕中心点划分(PAM)方法进行聚类,以生成初始聚类数量通过基于共识的方法自动确定的分箱。最后,使用轮廓系数、兰德指数、召回率、精确率和准确率来测试所获得分箱的质量。使用基准化的低复杂度模拟和真实宏基因组数据集,将 MetaConClust 的性能与最近的方法和工具进行比较,发现它在无监督方法方面表现更好,在混合方法方面与之相当。这表明基于共识的聚类方法是一种自动找到宏基因组学数据分箱数量的有前途的方法。