Garrett Natalie, Viruel Juan, Klimpert Nathaniel, Soto Gomez Marybel, Lam Vivienne K Y, Merckx Vincent S F T, Graham Sean W
Department of Botany, University of British Columbia, Vancouver, BC, Canada.
Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
Am J Bot. 2023 Apr;110(4):e16141. doi: 10.1002/ajb2.16141. Epub 2023 Apr 21.
Species in Thismiaceae can no longer photosynthesize and instead obtain carbon from soil fungi. Here we infer Thismiaceae phylogeny using plastid genome data and characterize the molecular evolution of this genome.
We assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. We investigated plastid-genome structural changes, considering locally colinear blocks (LCBs). We also characterized possible shifts in selection pressure in retained genes by considering changes in the ratio of nonsynonymous to synonymous changes (ω).
Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses across descendent lineages. In addition to massive size reduction, Thismiaceae plastid genomes experienced occasional inversions, and there were likely two independent losses of the plastid inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω << 1), with significant and sporadic weakening or strengthening in several instances. The bifunctional trnE-UUC gene of Thismia huangii may retain a secondary role in heme biosynthesis, despite a probable loss of functionality in protein translation. Several cis-spliced group IIA introns have been retained, despite the loss of the plastid intron maturase, matK.
We infer that most gene losses in Thismiaceae occurred early and rapidly, following the initial loss of photosynthesis in its stem lineage. As a species-rich, fully mycoheterotrophic lineage, Thismiaceae provide a model system for uncovering the unique and divergent ways in which plastid genomes evolve in heterotrophic plants.
水玉簪科植物已不再进行光合作用,而是从土壤真菌中获取碳。在此,我们利用质体基因组数据推断水玉簪科的系统发育,并对该基因组的分子进化进行表征。
我们从基因组浅层测序数据中组装了5个水玉簪科质体基因组,加入此前已发表的数据用于系统发育基因组学推断。我们考虑局部共线区域(LCB),研究质体基因组结构变化。我们还通过考虑非同义突变与同义突变的比率(ω)变化,表征保留基因中选择压力可能发生的转变。
水玉簪科在该科早期分化前后经历了两次主要的基因丢失脉冲,随后在后代谱系中出现零星的基因丢失。除了大幅缩小尺寸外,水玉簪科质体基因组偶尔发生倒位,并且可能有两次独立的质体反向重复(IR)区域丢失。保留的质体基因总体上仍处于较强的纯化选择之下(ω << 1),在若干情况下有显著且零星的减弱或增强。尽管黄氏水玉簪的双功能trnE-UUC基因在蛋白质翻译中可能丧失功能,但它可能在血红素生物合成中保留次要作用。尽管质体内含子成熟酶matK缺失,但仍保留了几个顺式剪接的IIA类内含子。
我们推断,水玉簪科的大多数基因丢失发生在早期且迅速,是在其茎系光合作用最初丧失之后。作为一个物种丰富、完全菌异养的谱系,水玉簪科提供了一个模型系统,用于揭示质体基因组在异养植物中独特且不同的进化方式。