Suppr超能文献

Interface interaction between silica and organic macromolecule conditioned forward osmosis membranes: Insights into quantitative thermodynamics and dynamics.

作者信息

Zhu Xianzheng, Tian Tuo, Li Danyang, Hei Shengqiang, Chen Lu, Song Guangqing, Lin Weichen, Huang Xia

机构信息

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

出版信息

Water Res. 2023 Apr 1;232:119721. doi: 10.1016/j.watres.2023.119721. Epub 2023 Feb 8.

Abstract

Silica scaling is a rising concern in forward osmosis membrane-based water treatment process. The coexistence of ubiquitous organic macromolecules causes complex silica scaling. The silica scaling mechanism on the surface of the organic conditioned membrane remains unclear. An integrated multi scale thermodynamic and dynamic approach was used in this study to provide in-depth insights into the binding effect at the interface between the silica and the organic conditioned membrane at the molecular level. Sodium alginate (SA) was used as the model polysaccharide, bovine serum albumin (BSA) and lysozyme (LYZ) were chosen as two oppositely charged proteins. The results show that the silica scaling degree of different organic conditioned membranes follows the order LYZ > BSA > SA. The binding strength between silica and organic macromolecules and the membrane surface charge are the major factors governing the degree of silica scaling. Quartz crystal microbalance with dissipation (QCM-D), isothermal titration calorimetry (ITC), and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model analyses were conducted to quantify the binding capacity of silica to the organic conditioned membrane. The LYZ conditioned membrane exhibits the highest affinity for silica adsorption, and electrostatic interaction was the main molecular interaction force. This study provides fresh insights into how silica and an organic conditioned membrane interact and induce silica scaling, providing new information on potential mechanisms and control strategies to prevent membrane scaling.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验