Suppr超能文献

光诱导芬顿反应中 Fe(Ⅱ)的非均相再生用于高效去除多环抗生素及深入的电荷转移机制。

Photo-induced heterogeneous regeneration of Fe(Ⅱ) in Fenton reaction for efficient polycyclic antibiotics removal and in-depth charge transfer mechanism.

机构信息

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.

出版信息

J Colloid Interface Sci. 2023 May 15;638:768-777. doi: 10.1016/j.jcis.2023.02.010. Epub 2023 Feb 6.

Abstract

Fenton reaction is regarded as a potential treatment for antibiotics removal, but challenges remain due to the sluggish reaction kinetics of Fe(III) reduction and incomplete degradation from insufficient active substance. Distinguished from traditional Fe(Ⅱ) regeneration techniques, this work focuses on utilizing the aliovalent redox pairs and built-in electric field to induce photo-excited electrons to cross the material interface and achieve Fe(III) reduction (heterogeneous regeneration). Herein, oxygen-deficient CeO particles are anchored on metal-organic frameworks (MIL-88A) and thus constitute the heterojunction with enhanced photoelectric properties, accelerating the directional charge transfer. Consequently, the synthesized MIL-88A/CeO(OV) composite can degrade 95.76% of oxytetracycline within 60 min in photo-Fenton reaction and maintain a high mineralization rate (75.33%) after 4 cyclic tests. Furthermore, the charge transfer mechanisms of Fe cycle and antibiotics mineralization are both unveiled via experiment results and theorical calculation. This work proposes a new paradigm for constructing self-sufficient photo-Fenton catalytic system for efficient and sustainable removal of polycyclic antibiotics.

摘要

芬顿反应被认为是一种有潜力的抗生素去除方法,但由于 Fe(III)还原反应动力学缓慢和活性物质不足导致不完全降解,仍存在挑战。与传统的 Fe(Ⅱ)再生技术不同,这项工作侧重于利用不等价氧化还原对和内置电场来诱导光激发电子跨越材料界面,从而实现 Fe(III)还原(异相再生)。在此,将缺氧的 CeO 颗粒锚定在金属有机骨架(MIL-88A)上,从而构成具有增强光电性能的异质结,加速定向电荷转移。因此,合成的 MIL-88A/CeO(OV)复合材料在光芬顿反应中可在 60 分钟内降解 95.76%的土霉素,并且在 4 次循环测试后仍保持 75.33%的高矿化率。此外,通过实验结果和理论计算揭示了 Fe 循环和抗生素矿化的电荷转移机制。这项工作为构建自维持的光芬顿催化体系以实现高效和可持续的多环抗生素去除提出了一个新的范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验