Suppr超能文献

大型流行病学癌症辐射队列研究中剂量-反应非线性的虚假迹象;一项模拟研究。

False Indications of Dose-Response Nonlinearity in Large Epidemiologic Cancer Radiation Cohort Studies; A Simulation Exercise.

机构信息

Senior Scientist Emeritus, Consulting in the Public Interest, Lambertville, New Jersey 08530.

Distinguished Professor of Science Emeritus, Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610.

出版信息

Radiat Res. 2023 Apr 1;199(4):354-372. doi: 10.1667/RADE-21-00217.1.

Abstract

This study explores the likely prevalence of false indications of dose-response nonlinearity in large epidemiologic cancer radiation cohort studies (A-bomb survivors, INWORKS, Techa River). Reasons: Increasing numbers of tests of nonlinearity are being made in studies. Hypothesized nonlinear dose-response models have been justified to policy makers by analyses that rely in part on isolated findings that could be statistical fluctuations. After removing dose nonlinearity (linearization) by adjusting person-years of observation at each dose category, indications of nonlinearity, necessarily false, were counted in 5,000 randomized replications of six datasets. The average frequency of any false positive for five indicators of nonlinearity tested against a linear null was roughly 25% in Monte Carlo simulations per study, consistent with binomial calculations, increasing to ∼50% within 6 studies assessed. Comparable frequencies were found using Akaike's information criterion (AIC) for model selection or multi-model averaging. False above-zero threshold doses were found more than 50% of the time, averaging to 0.05 Gy, consistent with findings in the 6 studies. Such bias, uncorrected, could distort meta-analyses of multiple studies, because meta-analyses can incorporate high P value findings. AIC-based correction for the extra threshold parameter lowered these false occurrences to 8 to 19%. Given the simulation rates, the possibility of false positives might be noted when isolated findings of nonlinearity are discussed in a regulatory context. When reporting a threshold dose with a P value > 0.05, it would be informative to note the expected high false prevalence rate due to bias.

摘要

本研究探讨了在大型流行病学癌症辐射队列研究(原子弹幸存者、INWORKS、捷恰河)中,假剂量-反应非线性指示的可能普遍性。原因:越来越多的非线性测试正在进行中。假设的非线性剂量反应模型已经通过部分依赖于可能是统计波动的孤立发现的分析为决策者提供了依据。在通过调整每个剂量类别中的观察人年来消除剂量非线性(线性化)之后,在六个数据集的 5000 次随机复制中计算了必然虚假的非线性指示。在每个研究的蒙特卡罗模拟中,针对线性零假设测试的五个非线性指标中的任何一个假阳性的平均频率约为 25%,与二项式计算一致,在评估的 6 项研究中增加到约 50%。使用模型选择或多模型平均的赤池信息量准则(AIC)也发现了类似的频率。假的零阈值剂量发现超过 50%的时间,平均为 0.05 Gy,与 6 项研究的结果一致。如果不进行校正,这种偏差可能会扭曲对多个研究的荟萃分析,因为荟萃分析可以纳入高 P 值的发现。基于 AIC 的对额外阈值参数的校正将这些假阳性事件降低到 8 到 19%。鉴于模拟率,如果在监管背景下讨论非线性的孤立发现,可能会注意到假阳性的可能性。当报告 P 值>0.05 的阈值剂量时,由于偏差,注意到预期的高假阳性率是有益的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验