Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, New York; Weill Cornell College of Medicine, New York, New York.
Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, New York.
J Arthroplasty. 2023 Jun;38(6S):S259-S265.e2. doi: 10.1016/j.arth.2023.02.015. Epub 2023 Feb 13.
Achieving adequate implant fixation is critical to optimize survivorship and postoperative outcomes after revision total knee arthroplasty (rTKA). Three anatomical zones (ie, epiphysis, metaphysis, and diaphysis) have been proposed to assess fixation, but are not well-defined. The purpose of the study was to develop a deep learning workflow capable of automatically delineating rTKA zones and cone placements in a standardized way on postoperative radiographs.
A total of 235 patients who underwent rTKA were randomly partitioned (6:2:2 training, validation, and testing split), and a U-Net segmentation workflow was developed to delineate rTKA fixation zones and assess revision cone placement on anteroposterior radiographs. Algorithm performance for zone delineation and cone placement were compared against ground truths from a fellowship-trained arthroplasty surgeon using the dice segmentation coefficient and accuracy metrics.
On the testing cohort, the algorithm defined zones in 98% of images (8 seconds/image) using anatomical landmarks. The dice segmentation coefficient between the model and surgeon was 0.89 ± 0.08 (interquartile range [IQR]:0.88-0.94) for femoral zones, 0.91 ± 0.08 (IQR: 0.91-0.95) for tibial zones, and 0.90 ± 0.05 (IQR:0.88-0.94) for all zones. Cone identification and zonal cone placement accuracy were 98% and 96%, respectively, for the femur and 96% and 89%, respectively, for the tibia.
A deep learning algorithm was developed to automatically delineate revision zones and cone placements on postoperative rTKA radiographs in an objective, standardized manner. The performance of the algorithm was validated against a trained surgeon, suggesting that the algorithm demonstrated excellent predictive capabilities in accordance with relevant anatomical landmarks used by arthroplasty surgeons in practice.
在翻修全膝关节置换术(rTKA)后,实现足够的植入物固定对于优化存活率和术后结果至关重要。已经提出了三个解剖区域(即骨骺、干骺端和骨干)来评估固定情况,但这些区域没有得到很好的定义。本研究的目的是开发一种深度学习工作流程,能够以标准化的方式自动描绘 rTKA 区域和锥体放置。
共 235 例接受 rTKA 的患者被随机分组(6:2:2 训练、验证和测试),并开发了一个 U-Net 分割工作流程,以描绘 rTKA 固定区域并评估前后位 X 线片上的翻修锥体放置情况。使用 Dice 分割系数和准确性度量标准,将算法对区域划分和锥体放置的性能与 fellowship培训的关节置换外科医生的真实情况进行比较。
在测试队列中,该算法使用解剖学标志在 98%的图像中(8 秒/图像)定义了区域。模型与外科医生之间的 Dice 分割系数为股骨区域为 0.89 ± 0.08(四分位距 [IQR]:0.88-0.94),胫骨区域为 0.91 ± 0.08(IQR:0.91-0.95),所有区域为 0.90 ± 0.05(IQR:0.88-0.94)。股骨的锥体识别和分区锥体放置准确率分别为 98%和 96%,胫骨的准确率分别为 96%和 89%。
开发了一种深度学习算法,以客观、标准化的方式自动描绘术后 rTKA 射线照片上的翻修区域和锥体放置。该算法的性能经过了受过训练的外科医生的验证,表明该算法在符合关节置换外科医生在实践中使用的相关解剖学标志的情况下,具有出色的预测能力。