Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371.
J Chem Phys. 2023 Feb 14;158(6):064103. doi: 10.1063/5.0136652.
The excitation energy transfer (EET) process for photosynthetic antenna complexes consisting of subunits, each comprised of multiple chromophores, remains challenging to describe. The multichromophoric Förster resonance energy transfer theory is a popular method to describe the EET process in such systems. This paper presents a new time-domain method for calculating energy transfer based on the combination of multichromophoric Förster resonance energy transfer theory and the Numerical Integration of the Schrödinger Equation method. After validating the method on simple model systems, we apply it to the Light-Harvesting antenna 2 (LH2) complex, a light harvesting antenna found in purple bacteria. We use a simple model combining the overdamped Brownian oscillators to describe the dynamic disorder originating from the environmental fluctuations and the transition charge from the electrostatic potential coupling model to determine the interactions between chromophores. We demonstrate that with this model, both the calculated spectra and the EET rates between the two rings within the LH2 complex agree well with experimental results. We further find that the transfer between the strongly coupled rings of neighboring LH2 complexes can also be well described with our method. We conclude that our new method accurately describes the EET rate for biologically relevant multichromophoric systems, which are similar to the LH2 complex. Computationally, the new method is very tractable, especially for slow processes. We foresee that the method can be applied to efficiently calculate transfer in artificial systems as well and may pave the way for calculating multidimensional spectra of extensive multichromophoric systems in the future.
由多个发色团组成的亚基组成的光合天线复合物的激发能量转移(EET)过程仍然难以描述。多色Förster 共振能量转移理论是描述此类系统中 EET 过程的一种流行方法。本文提出了一种新的基于多色Förster 共振能量转移理论和薛定谔方程数值积分方法组合的基于时域的能量转移计算方法。在对简单模型系统进行验证后,我们将其应用于 Light-Harvesting antenna 2(LH2)复合物,这是一种在紫色细菌中发现的光收集天线。我们使用结合了过阻尼布朗振荡器的简单模型来描述源自环境波动的动态无序和静电势耦合模型的跃迁电荷,以确定发色团之间的相互作用。我们证明,使用该模型,LH2 复合物内两个环之间的计算光谱和 EET 速率与实验结果吻合良好。我们进一步发现,用我们的方法也可以很好地描述相邻 LH2 复合物中环之间的转移。我们得出结论,我们的新方法可以准确描述生物相关多色系统的 EET 速率,与 LH2 复合物相似。在计算上,新方法非常易于处理,特别是对于缓慢的过程。我们预计该方法可用于有效地计算人工系统中的转移,并且可能为未来广泛的多色系统的多维光谱计算铺平道路。