Wang Siwei, Chuang Yi-Ting, Hsu Liang-Yan
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
J Chem Phys. 2022 Nov 14;157(18):184107. doi: 10.1063/5.0106828.
In this study, we develop a theory of multichromophoric excitation energy transfer (MC-EET) in the framework of macroscopic quantum electrodynamics. The theory we present is general for studying the interplay between energy transfer and fluorescence in the presence of arbitrary inhomogeneous, dispersive, and absorbing media. The dynamical equations of MC-EET, including energy-transfer kernels and fluorescence kernels, allow us to describe the combined effects of molecular vibrations and photonic environments on excitation energy transfer. To demonstrate the universality of the MC-EET theory, we show that under specific conditions, the MC-EET theory can be converted to three representative theories. First, under the Markov approximation, we derive an explicit Förster-type expression for plasmon-coupled resonance energy transfer [Hsu et al., J. Phys. Chem. Lett. 8, 2357 (2017)] from the MC-EET theory. In addition, the MC-EET theory also provides a parameter-free formula to estimate transition dipole-dipole interactions mediated by photonic environments. Second, we generalize the theory of multichromophoric Förster resonance energy transfer [Jang et al., Phys. Rev. Lett. 92, 218301 (2004)] to include the effects of retardation and dielectric environments. Third, for molecules weakly coupled with photonic modes, the MC-EET theory recovers the previous main result in Chance-Prock-Silbey classical fluorescence theory [Chance et al., J. Chem. Phys. 60, 2744 (1974)]. This study opens a promising direction for exploring light-matter interactions in multichromophoric systems with possible applications in the exciton migration in metal-organic framework materials and organic photovoltaic devices.
在本研究中,我们在宏观量子电动力学框架下发展了一种多发色团激发能量转移(MC-EET)理论。我们提出的理论对于研究在任意非均匀、色散和吸收介质存在下能量转移与荧光之间的相互作用具有通用性。MC-EET的动力学方程,包括能量转移核和荧光核,使我们能够描述分子振动和光子环境对激发能量转移的综合影响。为了证明MC-EET理论的通用性,我们表明在特定条件下,MC-EET理论可以转化为三种代表性理论。首先,在马尔可夫近似下,我们从MC-EET理论推导出了等离子体耦合共振能量转移的显式福斯特型表达式[Hsu等人,《物理化学快报》8, 2357 (2017)]。此外,MC-EET理论还提供了一个无参数公式来估计由光子环境介导的跃迁偶极-偶极相互作用。其次,我们将多发色团福斯特共振能量转移理论[Jang等人,《物理评论快报》92, 218301 (2004)]进行了推广,以包括延迟和介电环境的影响。第三,对于与光子模式弱耦合的分子,MC-EET理论恢复了Chance-Prock-Silbey经典荧光理论[Chance等人,《化学物理杂志》60, 2744 (1974)]中的先前主要结果。这项研究为探索多发色团系统中的光-物质相互作用开辟了一个有前景的方向,可能应用于金属有机框架材料中的激子迁移和有机光伏器件。