Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA.
AI for Science Institute, Beijing 100080, China.
J Chem Phys. 2023 Feb 14;158(6):064104. doi: 10.1063/5.0131567.
A hallmark of meso-scale interfacial fluids is the multi-faceted, scale-dependent interfacial energy, which often manifests different characteristics across the molecular and continuum scale. The multi-scale nature imposes a challenge to construct reliable coarse-grained (CG) models, where the CG potential function needs to faithfully encode the many-body interactions arising from the unresolved atomistic interactions and account for the heterogeneous density distributions across the interface. We construct the CG models of both single- and two-component polymeric fluid systems based on the recently developed deep coarse-grained potential [Zhang et al., J. Chem. Phys. 149, 034101 (2018)] scheme, where each polymer molecule is modeled as a CG particle. By only using the training samples of the instantaneous force under the thermal equilibrium state, the constructed CG models can accurately reproduce both the probability density function of the void formation in bulk and the spectrum of the capillary wave across the fluid interface. More importantly, the CG models accurately predict the volume-to-area scaling transition for the apolar solvation energy, illustrating the effectiveness to probe the meso-scale collective behaviors encoded with molecular-level fidelity.
中尺度界面流体的一个特点是多方面的、依赖于尺度的界面能量,这种能量在分子和连续体尺度上常常表现出不同的特征。多尺度性质给构建可靠的粗粒化(CG)模型带来了挑战,其中 CG 势函数需要忠实地编码出由未解析的原子间相互作用产生的多体相互作用,并解释界面上不均匀的密度分布。我们基于最近开发的深度粗粒化势[Zhang 等人,J. Chem. Phys. 149, 034101 (2018)]方案构建了单组分和双组分聚合物流体系统的 CG 模型,其中每个聚合物分子都被建模为一个 CG 粒子。通过仅使用热平衡状态下瞬时力的训练样本,构建的 CG 模型可以准确地再现体相中空穴形成的概率密度函数以及流体界面上的毛细波谱。更重要的是,CG 模型准确地预测了非极性溶剂化能的体积-面积标度转变,说明了以分子级精度探测编码的介观集体行为的有效性。