Suppr超能文献

一个 NPAS4-NuA4 复合物将突触活动与 DNA 修复联系起来。

A NPAS4-NuA4 complex couples synaptic activity to DNA repair.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA.

出版信息

Nature. 2023 Feb;614(7949):732-741. doi: 10.1038/s41586-023-05711-7. Epub 2023 Feb 15.

Abstract

Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.

摘要

神经元活动对于适应性电路重塑至关重要,但在有丝分裂后神经元的长寿命内,它会对基因组的稳定性造成固有风险。目前尚不清楚神经元是否已经获得了专门的基因组保护机制,使它们能够在活动高峰期承受数十年潜在的有害刺激。在这里,我们发现了一种依赖于活性的 DNA 修复机制,在这种机制中,NuA4-TIP60 染色质修饰物的一种新形式在诱导型神经元特异性转录因子 NPAS4 周围的激活神经元中组装。我们从大脑中纯化了这个复合物,并证明了它在引发神经元转录组和电路的活性依赖性变化方面的功能。通过对大脑中活性诱导的 DNA 双链断裂的特征进行描述,我们表明 NPAS4-NuA4 结合到反复受损的调节元件上,并招募额外的 DNA 修复机制来刺激它们的修复。NPAS4-NuA4 结合的基因调节元件部分免受与年龄相关的体细胞突变积累的影响。NPAS4-NuA4 信号的受损会导致一连串的细胞缺陷,包括失调的活性依赖性转录反应、对神经元抑制的失控和基因组不稳定性,所有这些最终都会降低生物体的寿命。此外,报道称 NuA4 复合物的几个成分的突变会导致神经发育和自闭症谱系障碍。总之,这些发现确定了一种神经元特异性复合物,它将神经元活动直接与基因组保护联系起来,其破坏可能导致发育障碍、神经退行性变和衰老。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d716/9946837/8dc45428399e/41586_2023_5711_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验