Suppr超能文献

神经元增强子是 DNA 单链断裂修复的热点。

Neuronal enhancers are hotspots for DNA single-strand break repair.

机构信息

Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.

National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.

出版信息

Nature. 2021 May;593(7859):440-444. doi: 10.1038/s41586-021-03468-5. Epub 2021 Mar 25.

Abstract

Defects in DNA repair frequently lead to neurodevelopmental and neurodegenerative diseases, underscoring the particular importance of DNA repair in long-lived post-mitotic neurons. The cellular genome is subjected to a constant barrage of endogenous DNA damage, but surprisingly little is known about the identity of the lesion(s) that accumulate in neurons and whether they accrue throughout the genome or at specific loci. Here we show that post-mitotic neurons accumulate unexpectedly high levels of DNA single-strand breaks (SSBs) at specific sites within the genome. Genome-wide mapping reveals that SSBs are located within enhancers at or near CpG dinucleotides and sites of DNA demethylation. These SSBs are repaired by PARP1 and XRCC1-dependent mechanisms. Notably, deficiencies in XRCC1-dependent short-patch repair increase DNA repair synthesis at neuronal enhancers, whereas defects in long-patch repair reduce synthesis. The high levels of SSB repair in neuronal enhancers are therefore likely to be sustained by both short-patch and long-patch processes. These data provide the first evidence of site- and cell-type-specific SSB repair, revealing unexpected levels of localized and continuous DNA breakage in neurons. In addition, they suggest an explanation for the neurodegenerative phenotypes that occur in patients with defective SSB repair.

摘要

DNA 修复缺陷常导致神经发育和神经退行性疾病,这突显了 DNA 修复在长寿有丝分裂后神经元中的特殊重要性。细胞基因组不断受到内源性 DNA 损伤的攻击,但令人惊讶的是,人们对积累在神经元中的损伤(如果有的话)的性质以及它们是否在整个基因组中或在特定位置积累知之甚少。在这里,我们表明有丝分裂后神经元在基因组内的特定部位积累了出乎意料的高水平的 DNA 单链断裂(SSB)。全基因组图谱显示 SSB 位于 CpG 二核苷酸内或附近的增强子以及 DNA 去甲基化的部位。这些 SSB 通过 PARP1 和 XRCC1 依赖性机制修复。值得注意的是,XRCC1 依赖性短补丁修复的缺陷会增加神经元增强子处的 DNA 修复合成,而长补丁修复的缺陷会减少合成。因此,神经元增强子中 SSB 修复的高水平可能是由短补丁和长补丁过程共同维持的。这些数据提供了关于特定部位和细胞类型的 SSB 修复的第一个证据,揭示了神经元中存在局部和持续的 DNA 断裂的意外水平。此外,它们为 SSB 修复缺陷患者中发生的神经退行性表型提供了一种解释。

相似文献

1
Neuronal enhancers are hotspots for DNA single-strand break repair.神经元增强子是 DNA 单链断裂修复的热点。
Nature. 2021 May;593(7859):440-444. doi: 10.1038/s41586-021-03468-5. Epub 2021 Mar 25.
8
DNA single-strand break repair and human genetic disease.DNA 单链断裂修复与人类遗传疾病。
Trends Cell Biol. 2022 Sep;32(9):733-745. doi: 10.1016/j.tcb.2022.04.010. Epub 2022 May 26.
9
Protein ADP-ribosylation and the cellular response to DNA strand breaks.蛋白质 ADP 核糖基化与细胞对 DNA 链断裂的反应。
DNA Repair (Amst). 2014 Jul;19:108-13. doi: 10.1016/j.dnarep.2014.03.021. Epub 2014 Apr 20.
10
Neuronal enhancers get a break.神经元增强子获得突破。
Neuron. 2021 Jun 2;109(11):1766-1768. doi: 10.1016/j.neuron.2021.05.008.

引用本文的文献

本文引用的文献

5
The genomics of oxidative DNA damage, repair, and resulting mutagenesis.氧化性DNA损伤、修复及由此产生的诱变的基因组学。
Comput Struct Biotechnol J. 2020 Jan 7;18:207-219. doi: 10.1016/j.csbj.2019.12.013. eCollection 2020.
10
XRCC1 protein; Form and function.XRCCl 蛋白;形态与功能。
DNA Repair (Amst). 2019 Sep;81:102664. doi: 10.1016/j.dnarep.2019.102664. Epub 2019 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验