Suppr超能文献

鱼类从幼体到成体呼吸调节的控制与影响研究

Insights into the control and consequences of breathing adjustments in fishes-from larvae to adults.

作者信息

Perry Steve F, Pan Yihang K, Gilmour Kathleen M

机构信息

Department of Biology, University of Ottawa, Ottawa, ON, Canada.

出版信息

Front Physiol. 2023 Jan 30;14:1065573. doi: 10.3389/fphys.2023.1065573. eCollection 2023.

Abstract

Adjustments of ventilation in fishes to regulate the volume of water flowing over the gills are critically important responses to match branchial gas transfer with metabolic needs and to defend homeostasis during environmental fluctuations in O and/or CO levels. In this focused review, we discuss the control and consequences of ventilatory adjustments in fish, briefly summarizing ventilatory responses to hypoxia and hypercapnia before describing the current state of knowledge of the chemoreceptor cells and molecular mechanisms involved in sensing O and CO. We emphasize, where possible, insights gained from studies on early developmental stages. In particular, zebrafish () larvae have emerged as an important model for investigating the molecular mechanisms of O and CO chemosensing as well as the central integration of chemosensory information. Their value stems, in part, from their amenability to genetic manipulation, which enables the creation of loss-of-function mutants, optogenetic manipulation, and the production of transgenic fish with specific genes linked to fluorescent reporters or biosensors.

摘要

鱼类调节流经鳃的水量的通气调节是至关重要的反应,以匹配鳃部气体交换与代谢需求,并在氧气和/或二氧化碳水平发生环境波动时维持体内平衡。在这篇重点综述中,我们讨论了鱼类通气调节的控制和后果,在描述参与感知氧气和二氧化碳的化学感受细胞及分子机制的当前知识状态之前,简要总结了对缺氧和高碳酸血症的通气反应。我们尽可能强调从早期发育阶段研究中获得的见解。特别是,斑马鱼幼虫已成为研究氧气和二氧化碳化学感受的分子机制以及化学感受信息中枢整合的重要模型。它们的价值部分源于其易于进行基因操作,这使得能够创建功能丧失突变体、光遗传学操作,以及生产与荧光报告基因或生物传感器相连的特定基因的转基因鱼。

相似文献

1
Insights into the control and consequences of breathing adjustments in fishes-from larvae to adults.
Front Physiol. 2023 Jan 30;14:1065573. doi: 10.3389/fphys.2023.1065573. eCollection 2023.
2
Chemoreceptor plasticity and respiratory acclimation in the zebrafish Danio rerio.
J Exp Biol. 2006 Apr;209(Pt 7):1261-73. doi: 10.1242/jeb.02058.
3
The role of TASK-2 channels in CO sensing in zebrafish ().
Am J Physiol Regul Integr Comp Physiol. 2020 Sep 1;319(3):R329-R342. doi: 10.1152/ajpregu.00132.2020. Epub 2020 Jul 22.
4
Evaluating the physiological significance of hypoxic hyperventilation in larval zebrafish ().
J Exp Biol. 2019 Jul 5;222(Pt 13):jeb204800. doi: 10.1242/jeb.204800.
5
Role of cytosolic carbonic anhydrase Ca17a in cardiorespiratory responses to CO in developing zebrafish (.
Am J Physiol Regul Integr Comp Physiol. 2022 Oct 1;323(4):R532-R546. doi: 10.1152/ajpregu.00050.2022. Epub 2022 Aug 22.
6
The control of breathing in fishes - historical perspectives and the path ahead.
J Exp Biol. 2023 Apr 15;226(8). doi: 10.1242/jeb.245529. Epub 2023 Apr 25.
7
Serotonergic and cholinergic elements of the hypoxic ventilatory response in developing zebrafish.
J Exp Biol. 2013 Mar 1;216(Pt 5):869-80. doi: 10.1242/jeb.079657. Epub 2012 Nov 15.
8
Ventilatory responses of the clown knifefish, Chitala ornata, to arterial hypercapnia remain after gill denervation.
J Comp Physiol B. 2019 Dec;189(6):673-683. doi: 10.1007/s00360-019-01236-6. Epub 2019 Sep 24.
9
Air breathing and aquatic gas exchange during hypoxia in armoured catfish.
J Comp Physiol B. 2017 Jan;187(1):117-133. doi: 10.1007/s00360-016-1024-y. Epub 2016 Jul 26.
10
A role for nitric oxide in the control of breathing in zebrafish (Danio rerio).
J Exp Biol. 2015 Dec;218(Pt 23):3746-53. doi: 10.1242/jeb.127795. Epub 2015 Oct 20.

引用本文的文献

本文引用的文献

1
Lactate sensing by neuroepithelial cells isolated from the gills of killifish (Fundulus heteroclitus).
J Exp Biol. 2022 Dec 1;225(23). doi: 10.1242/jeb.245088. Epub 2022 Dec 9.
2
Paternal hypoxia exposure primes offspring for increased hypoxia resistance.
BMC Biol. 2022 Aug 30;20(1):185. doi: 10.1186/s12915-022-01389-x.
3
Control of Breathing in Ectothermic Vertebrates.
Compr Physiol. 2022 Aug 23;12(4):3869-3988. doi: 10.1002/cphy.c210041.
4
Role of cytosolic carbonic anhydrase Ca17a in cardiorespiratory responses to CO in developing zebrafish (.
Am J Physiol Regul Integr Comp Physiol. 2022 Oct 1;323(4):R532-R546. doi: 10.1152/ajpregu.00050.2022. Epub 2022 Aug 22.
5
Neurochemical Signalling Associated With Gill Oxygen Sensing and Ventilation: A Receptor Focused Mini-Review.
Front Physiol. 2022 Jul 13;13:940020. doi: 10.3389/fphys.2022.940020. eCollection 2022.
7
NTR 2.0: a rationally engineered prodrug-converting enzyme with substantially enhanced efficacy for targeted cell ablation.
Nat Methods. 2022 Feb;19(2):205-215. doi: 10.1038/s41592-021-01364-4. Epub 2022 Feb 7.
9
The development of the O-sensing system in an amphibious fish: consequences of variation in environmental O levels.
J Comp Physiol B. 2021 Jul;191(4):681-699. doi: 10.1007/s00360-021-01379-5. Epub 2021 May 23.
10
Brain and gills as internal and external ammonia sensing organs for ventilatory control in rainbow trout, Oncorhynchus mykiss.
Comp Biochem Physiol A Mol Integr Physiol. 2021 Apr;254:110896. doi: 10.1016/j.cbpa.2021.110896. Epub 2021 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验